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habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.





Zusammenfassung auf Deutsch

Das Thema der vorliegenden Diplomarbeit sind sequenzielle quantenmechanische Mes-
sungen. In diesem Zusammenhang werden auch quantenmechanische Einzelmessungen
betrachtet. Worum es sich bei dieser Art von Messungen handelt, wird zusammen mit
weiteren Postulaten der Quantenmechanik zu Beginn von Kapitel 1 definiert. Dabei wird
ein in der Quanten-Informationstheorie verbreiteter Ansatz gewählt. Nach Einführung
eines Modells für Einzel-Qubit-Systeme, der Bloch-Kugel, werden in diesem Kapitel
Maße definiert, mit denen sich die Qualität von Messungen quantifizieren lässt: Die
Disturbance und die Deviation. Die Disturbance ermöglicht die Angabe der Störung
am gemessenen System; die Deviation ermöglicht es, die Güte der Schätzung für den
Parameter |c1|

2
eines Qubits anzugeben. Die beiden Maße werden im Verlauf der Di-

plomarbeit immer wieder verwendet, um Prozeduren zu vergleichen, die das Schätzen
von |c1|

2 sowohl zu einem einzelnen Zeitpunkt (
”
Preestimation“ und

”
Postestimation“)

als auch in Echtzeit (
”
Tracking“) ermöglichen. Das Ziel ist üblicherweise das Finden

einer optimalen Estimation- und Tracking-Prozedur, d.h. einer Prozedur, bei der zu
einer gegebenen Disturbance die Deviation möglichst gering ist.

In Kapitel zwei werden so genannte projektive Messungen zur Verwendung mit Esti-
mation und Tracking diskutiert. Zunächst sieht es so aus, als ob diese aufgrund ihrer
stark störenden Natur völlig ungeeignet sind. Insbesondere könnte man denken, dass
mit ihnen keine wesentliche Information über die Dynamik eines Qubits gewonnen wer-
den kann. Dem ist jedoch nicht so: Mit projektiven Messungen lässt sich die Frequenz
der sinusartigen Oszillation von |c1|

2
mit beliebiger Genauigkeit bestimmen.

Die in Kapitel zwei besprochenen Nachteile projektiver Messungen können, wie in Ka-
pitel drei gezeigt wird, durch Verwendung so genannter minimaler Messungen zum Teil
vermieden werden. Im Wesentlichen ist es dadurch möglich, die Disturbance über einen
gewissen Bereich kontinuierlich zu regeln. Überraschend und zugleich enttäuschend ist
das Ergebnis der zugehörigen optimalen Postestimation-Prozedur: Die beste Schätzung
für den Parameter |c1|

2 eines Qubits ist, unabhängig von der verwendeten Disturbance,
immer 1/2. Schließlich wird noch kurz ein Thema angesprochen, das von Audretsch
et. al. viel diskutiert wurde: Tracking mithilfe von N-Serien. Dabei wird eine Sequenz
von kurz aufeinanderfolgenden Messungen zu so genannten N-Serien zusammen gefasst.
Deren Ergebnisse werden als Basis für die Schätzung von |c1|

2
in Echtzeit verwendet.



Das letzte große Kapitel der Diplomarbeit ist das vierte (darauf folgen noch die
Zusammenfassung mit Ausblick und die Anhänge). Thema sind nun allgemeine Mes-
sungen, also Messungen ohne besondere Einschränkungen. Aufgrund ihrer großen An-
zahl von Parametern, ist es besonders schwer, optimale Prozeduren für Estimation und
Tracking zu finden. Diesbezüglich wird deshalb nur der Fall von Postestimation mit
einem und zwei möglichen Messausgängen betrachtet. Es zeigt sich, dass sich mithil-
fe von unitären Anteilen an den Messoperatoren die Deviation im Vergleich zu jener
der entsprechenden Prozedur aus Kapitel drei weiter senken lässt. Die beste Schätzung
schwankt dann offenbar zwischen 1/3 und 2/3. Abgeschlossen wird das Kapitel mit der
Betrachtung der besten Schätzung für Tracking unter bestimmten Rahmenbedingun-
gen. Sie ermöglicht ein beliebig dichtes Annähern der geratenen Zeitentwicklung an die
reale Zeitentwicklung von |c1|

2, auch wenn die verwendeten Messungen nur geringfügig
stören.
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Preface

This thesis deals with the estimation and tracking of qubit systems
by sequential quantum measurements and, related to that, by single
quantum measurements. In chapter one the postulates of the the-
ory of quantum mechanics that we are using are presented, followed
by discussion of the Bloch sphere, and, finally, the procedures and
parameters that are being estimated and tracked. Chapters three,
four, and five discuss observation and tracking under certain side
conditions that concern the measurement operators. More specif-
ically, chapter three deals with projective measurements, they are
fairly easy to handle; In chapter four the complexity is increased due
to the use of minimal measurements, a superset of projective mea-
surements; Chapter five deals with the most general but also most
complex case, namely general measurements. Finally, there are two
appendices. One contains some auxiliary calculations, the other one
contains an introduction to the computer program Trasim that was
used to create many of the plots in this thesis.

You may wonder what part of this thesis is my original work. I
didn’t mark it, but note that I usually point to existing results unless
I don’t know them. Of course, when I say original I don’t mean that
all the work was based solely on my ideas. Many ideas were already
present in the group or evolved in discussions with J. Audretsch, T.
Konrad, and also M. Kubitzki. When I started the thesis, I spend
some time on the search for good criteria that allow the quantization
of the quality of tracking and estimation procedures. Later, I concen-
trated mostly on several kinds of such procedures and wondered how
to optimize these under the criteria that we eventually decided to use
(deviation and disturbance). Originally, an idea was to use statistics
to reach that goal. Eventually, however, I found that parameterizing
procedures and later minimizing them analytically seems to be easier
(at least conceptually—the analytic expressions are often quite ugly).

Several calculations in this thesis are only roughly sketched. One
reason, I have to admit, is that I was running out of time while
writing the thesis (this also serves as an excuse for my bad writing
style), another reason is that I think that overly detailed calculations
are a bore to the reader. I do, however, have all these (and more)
calculations in thorough detail in my personal notes. These notes,
although very technical and probably hard to read, are, so I hope,
comprehensible for an interested and patient reader. Therefore, I
decided to make them available in digital form. To obtain them to-
gether with some explanation, a thorough thematic index, and some
auxiliary data (mostly calculations done with computer algebra pro-
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grams), you may try one of the following options:
• Search the World Wide Web (e.g. with http://www.google.com)

for the term

fekleediploma200234

and access the corresponding page or pages.
• Contact me by email (as of this writing, my address is felix.

klee@inka.de).
Note that the computer program Trasim is also available through
these channels.
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1 Foundations

The purpose of this chapter is the introduction and discussion of
fundamental postulates and definitions that are used throughout this
thesis.

1.1 The Postulates of Quantum Mechanics

There are several more or less common ways to postulate the theory
of Quantum Mechanics. In this thesis we use a way that is similar to
that used by M. A. Nielsen and I. L. Chuang in their book “Quantum
Computation and Quantum Information” [NC02]. It is based on four
postulates, the first of which tells us how to describe physical systems:

State Space Postulate. Associated with a physical system is a
Hilbert space, called state space. The state of the system is com-
pletely described by a unit vector, called state vector, in that space.

To denote state vectors and related items, we use the Dirac no-
tation that is explained in many books on quantum mechanics, for
example in the Sakurai [Sak94] and—albeit only for the special case of
systems with finite dimensional state spaces—in the Nielsen Chuang
[NC02]. In contrast to some books, however, in the present thesis the
following convention is used:

A ket always denotes a unit vector. A bra, correspondingly,
denotes a unit covector.

You may feel somewhat uncomfortable with the above postulate
since it only applies to closed systems and, perhaps, the only “real
life” closed system is the universe. Many “real life” systems, how-
ever, can be approximated as closed systems, especially when only
certain aspects of the systems are of interest. Systems that cannot
be approximated as being closed must be treated as subsystems of
closed systems. The following two postulates tell us how to construct
such systems and how a closed system evolves in time:

Product Space Postulate. The state space of a system composed
of two disjoint subsystems with state spaces HA, HB is the product
space HA ⊗HB.

Time Evolution Postulate. The free time evolution of the state
vector |ψ(t)〉 of a physical system is given by

|ψ(t)〉 = e−
i
~
H(t−t0) |ψ(t0)〉 ,
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where t0 is a point in time, ~ ≈ 1.055×10−34J s [oST04] is the Planck
constant divided by 2π, and H, called Hamiltonian, is a hermitian
operator that is characteristic for the system.

Information about the state of a closed physical system can be
extracted with a quantum mechanical measurement explained in the
postulate below. Note that we assume without further notice that
all measurements in this thesis can be performed in a short period
of time during which—aside from disturbance by the measurement—
the state of the system barely changes. Therefore, and especially in
order to keep things simple, we never take into account the duration
of measurements.

Measurement Postulate. A measurement has a discrete number
of outcomes. Associated with each outcome is a measurement opera-
tor that acts on states in the state space of the system being mea-
sured. The only condition that the set of measurement operators
M0,M1, . . . ,MN−1 (N ∈ {1, 2, 3, . . .}) needs to satisfy in order to
describe a valid measurement is the completeness relation

N−1∑

m=0

M †
mMm =

�
.

When measuring a system with state vector |ψ〉, the probability to get
outcome m is

p(m) = 〈ψ|M †
mMm |ψ〉 .

The corresponding postmeasurement state (a measurement may trans-
form the state being measured) is described by the vector

|ψ′(m)〉 =
1√
p(m)

Mm |ψ〉 .

1.2 The Bloch Sphere

In the present thesis we deal almost exclusively with systems whose
state space is two dimensional. We call these systems qubits or, some-
times, single qubit systems. It is common to denote the basis vectors
of qubit state space by |0〉 and |1〉. We use this notation without
much further notice throughout this thesis. In this section, however,
we will learn how to avoid state space, namely by visualizing states
as points on a unit sphere, called Bloch sphere. Before defining that
sphere we need to introduce a certain way to parameterize a qubit’s
state using four real valued parameters:

Lemma 1.2.1. A qubit state vector |ψ〉 can be decomposed as follows:

|ψ〉 = eiχ
(
cos

ϑ

2
|0〉 + eiϕ sin

ϑ

2
|1〉
)
, (1.2.1)
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where

χ ∈ [0, 2π), ϕ ∈ [0, 2π), ϑ ∈ [0, π].

Proof. The basis {|0〉 , |1〉} allows us to write

|ψ〉 = c0 |0〉 + c1 |1〉 , cj ∈ � . (1.2.2)

Due to normalization we have

〈ψ|ψ〉 = 1 ⇐⇒ |c0|2 + |c1|2 = 1.

It follows that it is possible to define an angle θ ∈ [0, π2 ] such that
|c0| = cos θ and |c1| = sin θ. By inserting these expressions into
equation (1.2.2), we get

|ψ〉 = eiχ cos θ |0〉 + eiχ
′

sin θ |1〉 ,

χ ∈ [0, 2π), χ′ ∈ [0, 2π), θ ∈ [0,
π

2
],

which, with ϕ = (χ′ − χ) mod 2π and ϑ = 2θ, is equivalent to
equation (1.2.1).

x

z

Pψ

y
ϑ

ϕ

~ψ

Figure 1.1: Position of the Bloch point
corresponding to a state vector
|ψ〉 = eiχ

`

cos ϑ
2
|0〉 + eiϕ sin ϑ

2
|1〉

´

.

Let |ψ〉 = c0 |0〉 + c1 |1〉 be the state vector of a qubit. Then a
decomposition into

|ψ〉 = eiχ
(
cos

ϑ

2
|0〉+eiϕ sin

ϑ

2
|1〉
)
, χ ∈ [0, 2π), ϕ ∈ [0, 2π), ϑ ∈ [0, π],

allows us, by interpreting the parameters ϑ and ϕ as spherical coor-
dinates, to visualize that vector as a point Pψ on the unit sphere (see
figure 1.1). In the context of qubits the unit sphere is called Bloch

sphere, the vector ~ψ connecting the origin and Pψ is called Bloch
vector, and for the point Pψ itself we use the term Bloch point1.

The mapping from the state vector |ψ〉 to the Bloch point Pψ is
unique:
• If c0 = 0, then ϑ = π and, consequently, Pψ coincides with the so

called south pole of the Bloch sphere (see figure 1.2).
• If c1 = 0, then ϑ = 0 and Pψ coincides with the north pole of the

Bloch sphere.
• If c0 6= 0 and c1 6= 0, then, because of their limited range, the

parameters ϑ and ϕ are uniquely defined, and so is Pψ . P1

P0

Figure 1.2: The north pole, P0, and
the south pole, P1, on the Bloch
sphere.

The mapping from the Bloch point Pψ to a state vector, however,
is not unique:
• If Pψ is at the south pole, then ϑ = π and, consequently, |ψ〉 =
ei(χ−ϕ) |1〉, where the phase factor ei(χ+ϕ) is unknown.

1Note that in the theory of magnetism the term Bloch point has a completely
different meaning: It is used to denote the singularity of a magnetization field
[MT02].
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• If Pψ is at the north pole, then ϑ = 0 and |ψ〉 = eiχ |0〉, where eiχ

is unknown.
• If Pψ is neither at the north nor at the south pole, then the pa-

rameters ϑ and ϕ are well defined and, aside from the factor eiχ,
so is |ψ〉 = eiχ

(
cos ϑ2 |0〉 + eiϕ sin ϑ

2 |1〉
)
.

In a nutshell: Given a Bloch point, we can, without further in-
formation, infer the corresponding state vector only up to a phase
factor. How important is that phase factor? Before answering that
question let us look at another lemma:

Lemma 1.2.2. Two states of that system, ψ(t0) and χ(t0) (t0 is
some point in time), cannot be distinguished by measurement if the
corresponding state vectors differ only by a phase factor (i.e. |χ(t0)〉 =
eiξ |ψ(t0)〉, where ϕ ∈ � ).

Proof. To prove that ψ(t0) and χ(t0) are indeed indistinguishable
we need to show that the probabilities of a single measurement or
a sequence of measurements (which may be started before, at, or
after t0) are the same in two cases. Instead of going into the details
of such a proof let us just have a look at what free time evolution
and measurement does to two states whose state vectors |ψ̃〉 and
|χ̃〉 = eiη |ψ̃〉 differ only by the phase factor eiη (it is intention not to
discuss only the state vectors |ψ(t0)〉 and |χ(t0)〉 because we are not
solely interested in what happens at the time t0). This should give
us an idea that the conjecture is true.
• The probability to get a measurement result m (corresponding

measurement operator: Mm) when measuring |χ̃〉 is the same as
when measuring |ψ̃〉:

pχ̃(m) = 〈χ̃|M †
mMm |χ̃〉 = 〈ψ̃| e−iηM †

mMme
iη |ψ̃〉 = pψ̃(m).

• The postmeasurement states |χ̃′
m〉 and |ψ̃′

m〉 of a measurement with
result m of |χ̃〉 and |ψ̃〉, respectively, (corresponding measurement
operator: Mm) differ only by the phase factor eiη :

|χ̃′
m〉 = (1/

√
pχ̃(m))Mm |χ̃〉 = (1/

√
pψ̃(m))Mme

iη |ψ̃〉 = eiη |ψ̃′
m〉 .

• The states |χ̃′〉 and |ψ̃′〉 resulting from a free time evolution of
duration ∆t (Hamiltonian H) of |χ̃〉 and |ψ̃〉, respectively, differ
only by the phase factor eiη :

|χ̃′〉 = e−iH∆t/~ |χ̃〉 = e−iH∆t/~eiη |ψ̃〉 = eiη |ψ̃′〉 .

We are now able to answer the question about the importance of
the phase factor that made us introduce the above lemma: Since
it cannot be measured, the phase factor is not important for the
discussion of observable features of a qubit’s process. In other words:
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If we are only interested in the part of a qubit’s process that can be
detected by measurement then the description of its state by a Bloch
point is sufficient. Since this is in general the case, we can always
use the “Bloch sphere picture” instead of the “state space picture”.
What follows is an visualization of the two basic components that
any process of a qubit is comprised of: time evolution according to
the Time Evolution Postulate , and measurements according to the
Measurement Postulate.

1.2.1 Free Time Evolution on the Bloch Sphere

To get a better understanding the dynamics of a qubit that is not
subjected to measurements, it pays off to visualize its time evolution
on the Bloch sphere. What follows are three lemmas. The first
two are necessary for the prove of the third one which states that
the trajectory of a freely evolving qubit on the Bloch sphere is very
simple to visualize, namely as a circle.

U

U

U

Figure 1.3: On the Bloch sphere, the
angle and axis that characterize the
rotation by the unitary operator U
don’t depend on initial state vectors.

Lemma 1.2.3. If |ψ〉 is the state vector of a qubit and U is a unitary
operator then, on the Bloch sphere, the application of U to |ψ〉 equals
a rotation by an angle α(U) about an axis with a direction ~n(U) that
goes through the origin. The quantities α(U) and ~n(U) only depend
on U , not on |ψ〉 (see figure 1.3).

Proof. See the section “Single Qubit Operations” in the chapter “Quan-
tum Circuits” in the Nielsen Chuang [NC02].

Lemma 1.2.4. The mapping of state vectors |ψ〉 to Bloch points Pψ
is continuous, in other words

lim
|ψ′〉→|ψ〉

Pψ′ = Pψ.

Proof. By decomposing Pψ′ and Pψ according to lemma 1.2.1 and
analyzing the convergence behavior of the cosine, sine, and exponen-
tial function terms, for different special case (Bloch point is on north
pole, on south pole, neither on south nor on north pole) it follows
after some transformations that, in Cartesian coordinates,

lim|ψ′〉→|ψ〉

(
sinϑ′ cosϕ′, sinϑ′ sinϕ′, cosϑ′

)

=
(
sinϑ cosϕ, sinϑ sinϕ, cosϑ

)
,

where ϑ, ϕ and ϑ′, ϕ′ are the spherical coordinates of Pψ and Pψ′ ,
respectively.

Figure 1.4: Trajectories of qubits on
the Bloch sphere.

Lemma 1.2.5. If |ψ(t)〉 is the state vector of a qubit that is not
subjected to measurements, then its trajectory, when viewed on the
Bloch sphere, is equal to a circle (see figure 1.4). The axis of the
circle is independent of the state of the qubit at any point in time,
i.e. it only depends on its Hamiltonian.
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Proof. Let Pψ(t) be the point on the Bloch sphere that corresponds to
|ψ(t)〉. To begin with, we observe its trajectory at discrete points in
time: n∆t, where n is an integer and ∆t is a time interval. According
to the Time Evolution Postulate the qubit’s evolution between two
adjacent points in time, n∆t and (n + 1)∆t, is described by the
application of the operator U(∆t) = e−iH∆t/~ to |ψ(n∆t)〉. Since
U(∆t) is a unitary operator we can apply lemma 1.2.3 and we see
that Pψ(n∆t) and Pψ((n+ 1)∆t) are related via a rotation about an

axis defined by a vector ~n(U). It follows that all points P (n∆t) lie
on a circle whose axis is independent of the qubits state at any point
in time. In the limit ∆t → 0 the points as a whole form a circle
because the time evolution of |ψ(t)〉 is continuous (by looking at the
Time Evolution Postulate it is easily seen that lim∆t→0 |ψ(t+ ∆t)〉 =
|ψ(t)〉) and the mapping from state vectors to points on the Bloch
sphere is continuous (recall lemma 1.2.4).

Mm

Pλm

Pψ

Pψ′
m

Figure 1.5: A minimal measurement of
a qubit in state ψ with result m
causes the Bloch point Pψ to move
towards Pλm

(|λm〉 is an eigenvector
corresponding to the largest
eigenvalue of Mm) along a great circle
on the Bloch sphere.

1.2.2 Measurements on the Bloch Sphere

Besides time evolution according to the Time Evolution Postulate
the other kind of dynamics that a qubit might be subjected to are
measurements. To understand how these can be visualized let us first
introduce a certain kind of measurement:

A minimal measurement is a measurement where all measure-
ment operators are positive.

Such a measurement can be visualized as follows.

Lemma 1.2.6. A minimal measurement of a qubit (result: m) causes
its Bloch point to move along a great circle towards the Bloch point
Pλm

where |λm〉 is an eigenvector corresponding to the largest eigen-
value of the measurement operator Mm (see figure 1.5).

Proof. See the dissertation of T. Konrad [Kon03].

|Mm|

Pψ

Pψ′
m

Um Pλm

Figure 1.6: By a measurement with
result m the Bloch point P (ψ) is
transformed according to lemma 1.2.7.
Here, Mm = Um |Mm| is a polar
decomposition of the corresponding
measurement operator, and |λm〉 is an
eigenvector that corresponds to the
largest eigenvalue of |Mm|.

The visualization of arbitrary measurements is slightly more com-
plicated:

Lemma 1.2.7. The transformation of a qubit’s Bloch point P (ψ)
due to a measurement with result m can, by using a left polar decom-
position Um |Mm| of the corresponding measurement operator Mm, be
visualized as the result of two successive steps (see figure 1.6):

1. The point P (ψ) moves along a great circle towards the point P (λm),
where |λm〉 is an eigenvector corresponding to the largest eigen-
value of |Mm|.

2. The resulting point is rotated by the unitary operator Um as ex-
plained by lemma 1.2.3.
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Proof. The state vector of the qubit after the measurement is

|ψ′
m〉 = Mm√

〈ψ|M†
mMm|ψ〉

|ψ〉 = Um
|Mm|√

〈ψ||Mm|†|Mm||ψ〉
|ψ〉 .

We see that the state vector’s transformation equals the transfor-
mation caused by a minimal measurement with result m and corre-
sponding measurement operator |Mm| followed by the application of
the unitary operator Um. The lemmas 1.2.6 and 1.2.3 tell us how this
sequence can be visualized on the Bloch sphere.

Note that the two steps explained in the above lemma are just
a visualization. Recall that the Measurement Postulate does not
describe the details of the transformation process.

1.3 Coefficients of a Qubit’s State Vector

It has already been said that in this thesis we are mostly dealing
with qubits. Often, however, our main focus will not be the state
vector |ψ〉 = c0 |0〉 + c1 |1〉 of a qubit, but the absolute square of
the coefficient c1. To this coefficient we will commonly refer to as
the parameter |c1|2 of a qubit. Note that it doesn’t make much of a

difference whether we deal with |c1|2 or with |c0|2 because |ψ〉 is a
unit vector and, therefore, we have the identity

|c0|2 + |c1|2 = 1

which allows us to calculate one quantity from the other. With the
help of the Bloch sphere we are able to get a somewhat intuitive idea
for the relation between a qubit’s state vector and the coefficients we
just discussed:

ϕ

ϑ

ϑ
2

y

x

z

P ′

Pψ

|c0|

|c1|

Figure 1.7: Visualization of the
parameters |c0| and |c1| of a qubit’s
state vector c0 |0〉 + c1 |1〉 with the
help of the Bloch sphere.

Lemma 1.3.1. In three dimensional space, the absolute values of the
coefficients c0 and c1 of a qubit’s state vector |ψ〉 = c0 |0〉+ c1 |1〉 can
be visualized as follows:
• |c0| is the shortest distance between P ′ and the z-axis,
• |c1| is the shortest distance between P ′ and the xy-plane,
where P ′ is an auxiliary Bloch point whose azimuthal coordinate is
half that of Pψ and whose polar coordinate is identical to that of Pψ
(see figure 1.7).

Proof. Using the decomposition |ψ〉 = eiχ
(
cos ϑ2 |0〉 + eiϕ sin ϑ

2 |1〉
)

(see lemma 1.2.1) and the obvious relation cj = 〈j|ψ〉 (j ∈ {0, 1}),
we get

|c0| =
∣∣cos ϑ2

∣∣ , |c1| =
∣∣sin ϑ

2

∣∣ .

That these parameters can be visualized with the help of the Bloch
vector P ′ can be understood by looking at the segment of the unit
circle parameterized by ϑ which is displayed in figure 1.7.
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The combination of the above lemma and lemma 1.2.5 (“trajecto-
ries of Bloch points are circles”) suggests that the time evolution of

|c1|2 is sine-like if the corresponding qubit is not subjected to mea-
surements. This conjecture is quantified in the following lemma:

ϕ/ω

α

0
t

β

Figure 1.8: Time evolution of |c1|2 as
explained in lemma 1.3.2.

Lemma 1.3.2. If |ψ(t)〉 = c0(t) |0〉 + c1(t) |1〉 is the state vector of
a qubit with Hamiltonian H that is not subjected to measurements,
then (see figure 1.8)

|c1(t)|2 = α+ β cos(ϕ+ ωt), (1.3.1)

where2, using the spectral decomposition

H = E0 |E0〉 〈E0| +E1 |E1〉 〈E1| with 〈E0|E1〉 = 0, E1 ≥ E0,

the quantities α, β, ϕ, and ω are defined as

α = 1 + 2 |〈1|E0〉 〈E0|ψ(0)〉|2 − |〈1|E0〉|2 − |〈E0|ψ(0)〉|2 ,

β = 2
∣∣∣〈1|E0〉 〈E0|ψ(0)〉 〈ψ(0)|1〉 − |〈1|E0〉 〈E0|ψ(0)〉|2

∣∣∣ ,

ϕ = arg
(
〈1|E0〉 〈E0|ψ(0)〉 〈ψ(0)|1〉

)
,

ω = (E1 −E0)/~.

Proof. Using the Time Evolution Postulate and the identity c1(t) =
〈1|ψ(t)〉, we see that

|c1(t)|2 =
∣∣〈1| e−iHt/~ |ψ(0)〉

∣∣2.

After inserting the Hamiltonian’s spectral decomposition, we get

|c1(t)|2 =
∣∣eiE0t/~ 〈1|E0〉 〈E0|ψ0〉 + eiE1t/~ 〈1|E1〉 〈E1|ψ0〉

∣∣2 ,

which, by application of relations such as |E0〉 〈E0| + |E1〉 〈E!| =
�
,

can be shown to be equal to equation (1.3.1).

1.4 Estimation and Tracking

Now, we are ready to introduce one of the main topics of this thesis:
The estimation and tracking of qubits. What is meant by that? We
define estimation to be the theory of finding out what parameter |c1|2
the qubit has at a certain point in time. Tracking is the theory of
tracking |c1|2 continuously in real time. As you see, estimation and
tracking are not concerned with finding the entire state vector of a
qubit.

2We use the common definition arg z = ϕ ∈ [0, 2π) : |z| eiϕ = z.
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1.4.1 Estimation

In the chapters to come we will see many different procedures for the
estimation of a qubit. Essentially, they all consist of two steps:
1. The qubit is measured using a single measurement or a sequence

of measurements.
2. Using the measurement results and, maybe, further information

(for example it may be known that the qubits initial state was in
the northern hemisphere of the Bloch sphere) the qubit’s parameter

|c1|2 at a certain point in time is estimated by a guess, commonly
denoted as g1.

Basically, we distinguish two kinds of estimation procedures:

Preestimation procedures: These are procedures where |c1|2’s value
as it was right before the measurement(s) is guessed.

Postestimation procedures: These are procedures where |c1|2’s value
as it was right after the measurement(s) is guessed.

In order to compare procedures of the same kind we need a good
measure for quality. It is, however, hard to find a single real number
for that purpose. The reason is that we are interested in two aspects
of an estimation procedure: How much is a qubit’s state disturbed
during measurement, and how much does the guess g1 deviate from
|c1|2? That’s why we introduce the following parameters (the mean
value is explained below):

Estimation disturbance: Mean square deviation between |c′1|
2

and |c̃′1|
2
,

commonly denoted3 as s = (|c′1|
2 − |c̃′1|

2
)2. The parameter |c′1|

2
is

|c1|2 after the measurement process, and |c̃′1|2 is what |c1|2 would
look after measurement process if it hadn’t been disturbed by any
measurements.

Preestimation deviation: Mean square deviation between g1 and |c1|2,
commonly denoted as v = (g1 − |c1|2)2. The value of g1 is, of

course, the guess for |c1|2 as it was before the measurement pro-
cess.

Postestimation deviation: Mean square deviation between g1′ and |c′1|
2
,

commonly denoted as v′ = (g′1 − |c′1|
2
)2. The value of g′1 is the

guess for |c′1|
2
, where, as above, |c′1|

2
is the value of |c1|2 after the

measurement procedure.

The mean value in all these cases, is to be taken over
• all possible initial states,
• all possible measurement outcomes,

3You may wonder why I chose the letters s and v to denote these quantities.
The reason is that the words “disturbance” and “deviation” share their first
and second letters, so I chose their third letters to distinguish them.
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• all possible time evolutions of the system in between measurements
(only necessary for sequences of measurements).

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
v

s

Figure 1.9:
Disturbance-deviation-graph of a
(fictive) parameterized estimation
procedure. Each point in the shaded
area corresponds to one or more
parameter combinations.

Related to that mean value, are the following expressions that we
often use when characterizing a qubit:
• A qubit with a totally unknown state is one, where the probability

density, often denoted as %(ψ), to find its state is everywhere the
same on the Bloch sphere. The function %(ψ) is, in this case,
frequently called uniform probability density.

• A qubit is said to have totally unknown time evolution if the prob-
ability density %(U) (U denotes a time evolution operator e−iHt/~)
is uniform which, by definition, is the case when %(U |0〉) is uni-
form (i.e. the probability density to find a state with state vector
U |0〉 is everywhere the same on the Bloch sphere).
It must be said that the procedures that we discuss in this thesis

cannot be assigned only one disturbance-deviation-pair. The reason
is that they all are parameterized (e.g. all procedures provide param-
eters that allow the control of the measurements used). So, it is best
to think of a disturbance-deviation-graph assigned to a procedure. In
figure 1.9 a possible such graph is displayed.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �v

s

A

BC

Figure 1.10:
Disturbance-deviation-graphs. The
procedures A and C are better than
B. C is better than A and may be
optimal.

D

B

A

C

v

s

Figure 1.11: Disturbance-deviation
graphs. The procedure A is not better
than B, nor is B better than A, but C
is better than A and B, and D is
better than C. D may be optimal.

The way how to compare the quality follows naturally:

An estimation procedure A is defined to be better than a pro-
cedure B if, for each possible disturbance s that A and B can
adopt, the relation

v(A)
max(s) ≤ v

(B)
min(s)

is satisfied, and, at least for one disturbance s, the relation

v(A)
max(s) < v

(B)
min(s)

is satisfied (v
(A)
max(s) and v

(B)
min(s) are the largest and smallest

corresponding deviations, respectively).

Accordingly, we define an estimation procedure to be optimal, if there
is no better such procedure. Figures 1.10 and 1.11 provide examples
for the comparison of estimation procedures. The pathologic cases
being illustrated by the graphs don’t need to worry us.

Sometimes it proves to be easier to find a procedure that in addi-
tion to being optimal also satisfies the following condition

There is no other estimation procedure that for any possible
deviation has a lower corresponding disturbance.

Such a procedure is called superoptimal (see figure 1.12 for an exam-
ple).

Some final note concerning the terms optimality and superoptimal-
ity. We will not always attribute these plainly to estimation proce-
dures. For example, we will frequently use the term “optimal param-
eters” by which we mean the set of parameters that make an esti-
mation procedures as good as it can be (see figure 1.13). Sometimes
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used is the term “best” in conjunction with estimation procedures
or their parameters. In this case, it just is a synonym for the term
“optimal”. The term “optimal guess” refers to the guess in the set
of optimal parameters.

v

s

v

s

A B

Figure 1.12: If the estimation
procedure A is optimal, then B is
superoptimal.
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� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �v

s

Figure 1.13: The optimal parameters
of the procedure with the displayed
disturbance deviation graph are those
that “produce” the lowest part
(marked by a solid curve).

1.4.2 Tracking

A procedure for tracking a qubit consists, in general, of the repetition
of the following steps:

• The qubit is measured.
• During the time up to the next measurement or up to the end of

the procedure, the qubit’s parameter |c1|2 is estimated by a guess,
commonly denoted as g1, that may take into account all previous
measurement results and any other information about the qubit.

See figure 1.14 for a fictive example of the devolution of a tracking
procedure.

|c̃1|2

g1

|c1|2

t

Figure 1.14: Evolution of the
undisturbed state |c̃1|2, the actual
state |c1|2, and the guess g1 in a
tracking procedure.

To characterize the quality of tracking procedures, we introduce
parameters similar to those used for estimation procedures:

Tracking Disturbance: Mean square deviation between |c1(t)|2 and

|c̃1(T )|2. |c1(t)|2 is the value of |c1|2 at the time t, and |c̃1(t)|2
is what |c1(t)|2 would look if |c1|2 hadn’t been subjected to any
measurements by the tracking procedure.

Tracking deviation: Mean square deviation between the guess g1(t)

and |c1(t)|2 (|c1(t)|2 is the same as above).

The mean value has to be taken over

• the duration of the measurement,
• all possible initial state,
• all possible sequences of measurement outcomes,
• all possible time evolutions of the system in between measure-

ments.

We say that a tracking procedure A is better than a tracking proce-
dure B if, for each possible disturbance s, the corresponding largest

and smallest deviations satisfy the relation v
(A)
max(s) ≤ v

(B)
min(s) and, at

least for one disturbance s, v
(A)
max(s) < v

(B)
min(s). The optimality of a

tracking procedure is defined accordingly.

It has to be said that in this thesis, we never calculate nor discuss
the disturbance and deviation of a tracking procedure. The reason is
that, due to the required time average, the resulting expressions can
become very complicated. In addition, we can approximate a tracking
procedure as a set of overlapping postestimation procedures:

The first procedure is based on the first measurement, the second
procedure on the first two measurements, the third on the first
three, and so on.
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This is actually the reason why there is so much discussion of postes-
timation procedures in this thesis. When I started research, the main
objective was to find good tracking procedures. Incidentally, since I
decided that preestimation procedures are not of much use for the
discussion of tracking, they aren’t discussed in this thesis. Anyone
that wants to learn more about them is referred to the diploma thesis
of M. Kubitzki [Kub03].



2 Estimation and Tracking with

Projective Measurements

The present chapter could be seen as a kind of warm-up for later
chapters where—due to generality—things sometimes get very com-
plicated. Instead of discussing a broad range of different measure-
ments, we will limit ourselves to so called projective measurements,
a class of measurements that you might already be familiar with and
that, usually, is fairly easy to handle:

A projective measurement is a measurement whose measurement
operators M0,M1, . . . ,MN−1 are of the form

Mm = |λm〉 〈λm| with 〈λm|λm′〉 = δmm′ .

The name of the measurement goes back to the fact that, since the
measurement operators are projectors, they project the premeasure-
ment state into a postmeasurement state that is—aside from a phase
factor—independent of the premeasurement state:

Lemma 2.0.1. The postmeasurement state vector of a qubit that has
been subjected to a projective measurement (measurement operators:
Mj = |λj〉 〈λj |, j ∈ {0, 1}) is

|ψ′〉 = sign(〈λm|ψ〉) |λm〉 , (2.0.1)

where m is the readout of the measurement, and ψ is the premeasure-
ment state of the qubit.

Proof. Equation (2.0.1) follows by the application of the Measurement
Postulate.

An obvious consequence of this lemma is that, knowing the result
of a measurement and its measurement operators, we can tell the
measurement state (up to a phase factor) with certainty. We don’t
need to know the premeasurement state!

P (ψ)

P (λ1)

P (λ0)

Figure 2.1: A projective measurement
(measurement operators:
M0 = |λ0〉 〈λ0| ,M1 = |λ1〉 〈λ1|)) with
result 0 projects a state vector |ψ〉
onto |ψ′〉 = |λ0〉.

Something else that is peculiar about projective measurements is
the fact that the number of measurement operators M0 = |λ0〉 〈λ0|,
M1 = |λ0〉 〈λ0|,. . . is related to the dimension of the Hilbert space that
they operate on. In single qubit Hilbert space their number is exactly
two. As is easily seen, this follows from the condition 〈λm|λm′〉 =
δmm′ and the completeness relation

∑
mM

†
mMm =

∑
m |λm〉 〈λm| =�

.
Figure 2.1 shows a visualization of the projective measurement on

the Bloch sphere. Note that |λ0〉 and |λ1〉 are diametrically opposing
points on the Bloch sphere. This is not by accident:
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Lemma 2.0.2. Any two orthogonal single qubit states |ψ0〉, |ψ1〉 are
diametrically opposing points P0, P1 on the Bloch sphere.

Proof. According to lemma 1.2.1 we can write the states |ψ0〉 , |ψ1〉 as

|ψj〉 = eiχj (cos
ϑj
2

|0〉 + eiϕj sin
ϑj
2

|1〉), j ∈ {0, 1},

where ϑj ∈ [0, π], ϕj ∈ [0, 2π] constitute their spherical coordinates
on the Bloch sphere. Since the states are orthogonal, it follows that
〈ψ0|ψ1〉 = 0 and, using the above expressions, we get

cos
ϑ0

2
cos

ϑ1

2
+ ei(ϕ1−ϕ0)

√
1 − cos2

ϑ0

2

√
1 − cos2

ϑ1

2
= 0.

The solution of this relation in terms of ϑj , ϕj is

(ϑ0 = π ∨ ϑ0 = 0 ∨ ϕ1 = ϕ0 − π ∨ ϕ1 = ϕ0 + π) ∧ ϑ1 = π − ϑ0.

After calculating the Bloch points P0, P1 (in Cartesian coordinates:
Pj = (sinϑj cosϕj , sinϑj sinϕj , cosϑj)) for each of the four possible
solutions, it follows that P1 = −P0.

We will now apply out knowledge about projective measurements
to estimation and tracking. In the following two sections we will
discuss an estimation and a tracking procedure under the following
side conditions:
• The initial state of observed systems is completely unknown.
• The time evolution of observed systems is completely unknown.
For each procedure we will find the optimal parameters. Finally, we
will turn to a completely different kind of procedure, which we call
frequency estimation procedure.

2.1 Postestimation

One of the simplest postestimation procedures is a procedure that
employs only a single projective measurement:

SPMP Procedure.

Full name: Single Projective Measurement Postestimation Procedure.
Parameters:

• Projective measurement operators Mj = |λj〉 〈λj | , j ∈ {0, 1}.
• A guess function g1.

Steps:
1. A projective measurement (measurement operators:) is per-

formed on a single qubit system in a premeasurement state |ψ〉.
We denote the readout by m and the postmeasurement state by
|ψ′
m〉.

2. |c′1(m)|2 = |〈1|ψ′
m〉|2 is estimated by a guess g′1(m) ∈ � that

may depend on
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• the measurement outcome m,
• the measurement operators M0,M1,
• information, if available, about the premeasurement state |ψ〉.

0.1 0.2
s

0.1

0.2

0.3

0.4

0.5
v’

Figure 2.2: SPMP procedures with
g′

1 = αm,α ∈ [0.3, 0.8] (solid thin
curve), g′

1 = m,α ∈ [0, 1] (dashed
curve), and g′

1 = α, α ∈ [0, 0.6] (thick
curve). The parameter α corresponds
to the measurement operator
M0 = |λ0〉 〈λ0|: α = |〈1|λ0〉|2.

Disturbance-deviation graphs for SPMP procedures with different
parameters are displayed in figure 2.2. In order to draw such graphs
and, ultimately, to find an optimal SPMP procedure, we need to know
the disturbance and postestimation deviation:

Lemma 2.1.1. When applied to a single qubit system whose initial
state is completely unknown an SPMP procedure has the following
disturbance s and postestimation deviation v′ (note that we use the
same notation as in the definition of the SPMP procedure):

s =
1

6
(2α2 − 2α+ 1), (2.1.1)

v′ =
1

2

(
g′1(m = 0)2 + g′1(1)2 − 2g′1(1) + 1

)

−
(
g′1(0) − g′1(1) + 1

)
α+ α2, (2.1.2)

where

α = |〈1|λ0〉|2 . (2.1.3)

Proof. In the last chapter we have defined the disturbance and postes-
timation deviation to be the average of (|c′1(m,ϕ)|2 − |c1(ψ)|2)2 and

(g′1(m) − |c′1(ψ)|2)2, respectively. In the present case we need to
average over the premeasurement states and the two possible mea-
surement results. Therefore we have

s =

∫
dψ %(ψ)

∑

m

p(m|ψ)
(
|c′1(m,ψ)|2 − |c1(ψ)|2

)2
, (2.1.4)

v′ =

∫
dψ %(ψ)

∑

m

p(m|ψ)
(
g′1(m) − |c′1(m,ψ)|2

)2
, (2.1.5)

where %(ψ) is the probability density of the premeasurement states
and p(m|ψ) is the probability to get measurement result m, if the
premeasurement state is |ψ〉.

Let us now prove that expression 2.1.4 is equal to expression 2.1.1
(the prove that 2.1.5 is equal to 2.1.2 is very similar—so we omit it).
First, we rewrite 2.1.4 as a sum:

s = s1 − 2s2 + s3, (2.1.6)

s1 =
∫
dψ %(ψ)

∑
m p(m|ψ) |c′1(m,ψ)|2 ,

s2 =
∫
dψ %(ψ)

∑
m p(m|ψ) |c′1(m,ψ)|2 |c1(ψ)|2 ,

s3 =
∫
dψ %(ψ)

∑
m p(m|ψ) |c1(ψ)|4 .
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The basic building blocks of the terms s1, s2, s3 are

p(m|ψ) = 〈ψ|M †
mMm |ψ〉 = |〈λm|ψ〉|2 ,

|c1(ψ)|2 = |〈1|ψ〉|2 ,

|ψ′(m,ψ)〉 = 1√
p(m|ψ)

Mm |ψ〉 = 〈λm|ψ〉√
p(m|ψ)

|λm〉 ,

|c′1(m,ψ)|2 = |〈1|ψ′(m,ψ)〉|2 = |〈1|λm〉|2 .

By substituting them into s1, s2, s3 we get1

s1 =
∑
m |〈1|λm〉|4

∫
dψ %(ψ) |〈λm|ψ〉|2 =

∑
m |〈1|λm〉|4

∫ 1

0
dαα

=
∑
m |〈1|λm〉|4 1

2 ,

s2 =
∑
m |〈1|λm〉|2

∫
dψ %(ψ)

∣∣〈λm|
(
|ψ〉 〈1|

)
|ψ〉
∣∣2

=
∑
m |〈1|λm〉|2

(
1
6 |〈0|λm〉|2 + 1

3 |〈1|λm〉|2
)

=
∑
m |〈1|λm〉|2

(
1
6 〈λm| � |λm〉 + 1

6 〈λm|1〉 〈1|λm〉
)

= 1
6

∑
m

(
|〈1|λm〉|2 + |〈1|λm〉|4

)
,

s3 =
∫
dψ %(ψ)

∑
m |〈λm|ψ〉|2 |〈1|ψ〉|4 =

∫
d%(ψ) 〈ψ| � |ψ〉 |〈1|ψ〉|4

=
∫
dψ %(ψ) |〈1|ψ〉|4 = 1/3.

With these expressions the sum (2.1.6) becomes

s = 1
6

(
|〈1|λ0〉|4 − 2 |〈1|λ1〉|2 + |〈1|λ1〉|4 − 2 |〈1|λ1〉|2

)
+ 1

3 ,

and, by using the relations

|〈1|λ0〉|2
(2.1.3)

= α,

|〈1|λ1〉|2 = 〈1|λ1〉 〈λ1|1〉 = 〈1|
( � − |λ0〉 〈λ0|

)
|1〉 = 1 − α,

it can be simplified to

s = 1
6 (2α2 − 2α+ 1),

which is identical to expression (2.1.1).

What are the optimal parameters for the SPMP procedure? Let
us start with the best guess:

Lemma 2.1.2. If an SPMP procedure is used to estimate a totally
unknown2 qubit, then its optimal guess is (we use the same notation
as in the definition of the SPMP procedure)

g′1(m) = |〈1|λm〉|2 .

1Note that some steps in the calculations are a bit rough. Originally, I planned
to describe them in appendix 5, but as time was running out, I decided against
it.

2Actually this restriction is not necessary: The optimal guess derived here is in-
dependent of the amount of information that we have about the initial system.
However, this generalization is not of importance.



2.2 Uniform Tracking 17

Proof. According to lemma 2.0.1, after the measurement the observed
system is in the state |ψ′

m〉 which is physically identical to |λm〉.
Consequently, |c′1(m)|2 = |〈1|λm〉|2. Because this quantity doesn’t
depend on the system’s initial state, it can be guessed with certainty
- the optimal guess is obviously

g′1(m) = |〈1|λm〉|2 . (2.1.7)

Since g′1(m) = |c′1(m)|2, we expect the postestimation deviation to
vanish. This is indeed the case as can be seen by inserting (2.1.7)
into equation (2.1.2):

v′
(
g′1(m) = |〈1|λm〉|2

)
= 0.

0.1 0.2
s

0.1

0.2

0.3

0.4

0.5
v’

Figure 2.3: Disturbance-deviation
graph of the SPMP procedure with
optimal parameters.

With the above guess the disturbance-deviation graph of the SPMP
procedure looks as displayed in figure 2.3. It follows that no further
restrictions to the parameters are necessary. In other words, the
following parameters are optimal:
• Any two projective measurement operators, M0 = |λ0〉 〈λ0| ,M1 =

|λ1〉 〈λ1| that satisfy the completeness relation according to the
Measurement Postulate.

• The guess g′1(m) = |〈1|λm〉|2.

2.2 Uniform Tracking

Although is carries a load of disadvantages, the following simple
tracking procedure is quite instructive:

UPMT Procedure.

Full name: Uniform Projective Measurement Tracking Procedure.
Parameters:

• A set of projective measurement operators, {M0 = |λ0〉 〈λ0| ,M1 =
|λ1〉 〈λ1|}.

• The number of measurements, N .
• The distance in time between measurements, τ .
• A guess function, g1.

Steps: The state ψ(t) of the qubit under observation is measured
at times t0, t0 + 1τ , t0 + 2τ , . . . , t0 + (N − 1)τ , where t0 is the
time when tracking starts. In parallel, the evolution of the param-
eter |c1(t)|2 = |〈1|ψ(t)〉|2 is continuously estimated using the guess
function g1(t) which may take into account all previous measure-
ment results and any additional information about the system.

First, a remark concerning the name of the procedure: it is called
“uniform” because all measurements use the same measurement op-
erators and each consecutive two measurements are separated by the
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same time interval. Let us now discuss the evolution of the parameter
|c1(t)|2 of a qubit under the influence of a UPMT procedure. It is
illustrated in figure 2.4. The system in all three plots has the same
Hamiltonian and the same initial state.

In the top plot of figure 2.4 we see that, with the onset of track-
ing, the vertical offset, the amplitude, and the phase of |c1(t)|2 are
“destroyed” as a consequence of the projective measurements. Only
the frequency is preserved since, recall lemma 1.3.2, it only depends
on the qubit’s Hamiltonian, not it’s state.

In the middle plot of figure 2.4, the same measurement operators
as in the top plot are used. However, they are applied at a very high
rate. The result is that the qubit’s state barely evolves in between
measurements. Therefore, the probability to get the same measure-
ment result twice in a row is very high, and, consequently, the pa-
rameter |c1|2 stays the same for long periods of time. The effect that
the dynamics of a system can be suppressed by a quick succession of
projective measurements is known as quantum Zeno effect.

In the bottom plot of figure 2.4 we see that the dynamics of the
system is suppressed, although the measurements are applied with the
same rate as in the top plot. What is happening here? Recall from
lemma 1.2.5 that the time evolution of the qubit’s Bloch point can
be described as a rotation about an axis whose orientation is defined
solely by the Hamiltonian of the system. Now, if, by measurement,
the Bloch point is projected onto that axis, it does not show any
dynamics anymore. This is what is happening here.

What are the optimal parameters for the UPMT procedure? We
will discuss only the optimal guess. In the case of a quick succession
of measurements (measurement operators: M0 = |λ0〉 〈λ0|, M1 =
|λ1〉 〈λ1|), it is obviously

g1 = |〈1|λm〉|2 ,

where m is the last measurement readout. In the case that the mea-
surements are more widely spaced as for example displayed in the top
plot of figure 2.4 this guess does not seem to be appropriate anymore.
Then, the guess

g1 = 1/2

seems to be the optimal guess since, on average, the distance of
|c1(t)|2 to 1/2 is smaller than to any other value. Which guess should
be chosen depends, of course, on a priory information about the min-
imum expected frequency of |c1(t)|2. In any case, it does not seem
to be possible to get much information about the original dynamics
of |c1(t)|2 by using the UPMT procedure. Additionally, this proce-
dure has the disadvantage that, due to the disruptive character of
projective measurements, the disturbance is very high, even for short
tracking durations.
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Figure 2.4: Evolution of the parameter |c1(t)|2 of a qubit under the influence of the UPMT procedure. On the vertical axis,
the time axis, individual measurements are denoted by whole numbers.

2.3 Frequency Determination

Judging from the last section, one may come to the conclusion that,
using projective measurements, it is not possible to get any valuable
information about the time evolution of a qubit’s parameter |c1|2.
This is not true! In fact, as we will see below, it is possible to de-
termine the frequency of the oscillation of |c1|2 to arbitrarily high
precision with the following procedure:

FD Procedure.

Full name: Frequency Determination Procedure.
Definitions:

• State of the observed qubit: |ψ〉.
• Offset α, amplitude β, phase ϕ, frequency ω, such that (recall

lemma 1.3.2)

|c1(t)|2 = α+ β cos(ϕ+ ωt).

• Observable frequency3:

ω̃ =






0 if the system’s Hamiltonian rotates Bloch points

about the z-axis of the Bloch sphere,

ω otherwise.

• Measurement operators: M0 = |0〉 〈0|, M1 = |1〉 〈1|.
Parameters:

• Measure for the time interval between measurements: ∆t ∈
(0,∆tmax], where ∆tmax = 2π/ω̃ for ω̃ 6= 0. For ω̃ = 0 the
value of ∆tmax can be chosen at will, it only must be positive.

3This definition is used because, if the Hamiltonian rotates states about the
Bloch sphere, there is no chance to determine the frequency ω by observing
|c1|2.
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Figure 2.5: The evolution of the parameter |c1|2 of a qubit under the influence of
an FD procedure with alternating durations between measurements (simulated
with Trasim).

• Measure for the number of measurements: N ∈ {1, 2, 3, . . .}.
Steps:

1. The variables M(∆t
2 ), M(∆t) are initialized to 0.

2. For preparation, the state |ψ(t)〉 is measured using the set of
measurement operators {M0,M1}. The readout is denoted by
m.

3. The following steps are repeated N times for τ = ∆t
2 and N

times for τ = ∆t (the order doesn’t matter):
a) In order to transform the vector |ψ〉 into |1〉, the unitary

operator U = |1〉 〈0| + |0〉 〈1| is applied to |ψ〉 if m = 0 (this
can be done by performing a measurement with U as its only
measurement operator).

b) The current time, t, is stored in the variable t̃.
c) During a time period of duration τ , the qubit’s state vector

evolves into |ψ(t̃+ τ)〉.
d) |ψ(t̃+ τ)〉 is measured using the set of measurement opera-

tors {M0,M1}. The readout is denoted by m.
e) If m = 1, then M(τ) is incremented by 1.

4. The observable frequency ω̃ is approximated by4

ω̃aprx =
2

∆t
arccosf(aaprx, baprx),

where aaprx = M(∆t
2 )/N , baprx = M(∆t)/N , and

f(x, y) =






y−1
2(x−1) − 1 for x ∈ [0, 1) ∧ y ∈ [4x− 3, 1],

1 for x = 1 ∧ y = 1,

1 for x ∈ [0, 1] ∧ y ∈ [0, 4x− 3).

To get a feeling how the FD procedure affects the evolution of the
parameter |c1|2, let us have a look at figure 2.5. We see that, with

the onset of the procedure at t = 0, |c1|2 is projected into 1 (steps 2

and 3a). Then |c1|2 evolves freely for a time period τ = ∆t (step 3c)
until it is measured (step 3d) and, at the same time, projected again
into 1 (steps 3d and 3a). This process is repeated with alternating
values of τ ∈ {∆t,∆t/2}. Note that, due to symmetry, step 3a

4We use the common definition arccos : x → ϕ with ϕ ∈ [0, π] and cosϕ = x.
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could be avoided (in this case |c1|2 would sometimes be projected
into 0) but then the calculation of ω̃aprx in step 4 may become a
bit more complicated. Something else that could be improved is the
first measurement (step 2): Its readout, m, is thrown away. This
value, however, could be used to get a little information about the
offset α, the amplitude β, and the phase ϕ. A preceding measurement
specifically designed for that purpose could be a further improvement.
Let us conclude this discussion by quantifying how the parameter |c1|2
evolves under the influence of an FD procedure:

Lemma 2.3.1. The parameter |c1|2 of a qubit with Hamiltonian H
that is subjected to an FD procedure evolves, in between measurements
at times t̃, as follows:

∣∣c1(t̃+ τ)
∣∣2 = 1 − β′ + β′ cos(ωτ), (2.3.1)

where the value β′ = 2
(
|〈1|E0〉|2 − |〈1|E0〉|4

)
is based on the spectral

decomposition

H = E0 |E0〉 〈E0| +E1 |E1〉 〈E1| with 〈E0|E1〉 = 0, E1 ≥ E0.

Proof. According to lemma 1.3.2 the time evolution of
∣∣c1(t̃+ τ)

∣∣2 is
given by

∣∣c1(t̃+ τ)
∣∣2 = α′ + β′ cos(ϕ′ + ωτ),

where α′, β′, ϕ′, and ω are defined by the eigensystem Ej , |Ej〉
(j ∈ {0, 1}) and by the initial state |ψ(t̃)〉. With |ψ(t̃)〉 = |1〉 if
follows, after basic algebraic manipulations, that equation (2.3.1) is
true.
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Figure 2.6: Plot of the function f from
the definition of the FD procedure.
Notice the discontinuity in (1, 1).

An important question that remains to be answered is how good
the approximation ω̃aprx is. The answer is that, at least for large
values of N , it is very good:

Lemma 2.3.2. The approximation ω̃aprx generated by an FD proce-
dure converges against the frequency ω̃ for N → ∞ (we use the same
notation as in the definition of that procedure).

Proof. Lemma 2.3.1 tells us that

∣∣c1(t̃+ τ)
∣∣2 = 1 − β′ + β′ cos(ωτ),

where β′ is defined by the eigensystem of the observed qubit’s Hamil-

tonian. Using the abbreviations a =
∣∣c1(t̃+ ∆t

2 )
∣∣2, b =

∣∣c1(t̃+ ∆t)
∣∣2,

and c = cos(ωτ), we get (recall that τ ∈ {∆t
2 ,∆t})

a = 1 − β′ + β′c, b = 1− β′ + β′(2c2 − 1).

With the frequency ω̃ and the function f (see the definition of the
FD procedure) it follows, after some algebraic manipulations, that
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ω̃ = 2
∆t arccosf(a, b). Mainly (a special case has to be considered for

a = 1, b = 1) with the observations that

limN→∞
M(τ)
N =

∣∣c1(t̃+ τ)
∣∣2 =

{
a for τ = ∆t/2,

b for τ = ∆t

and that f is a continuous function on [0, 1] × [0, 1]\(1, 1) (see fig-
ure 2.6) it follows that

ω̃ =
2

∆t
lim
N→∞

arccosf(aaprx, baprx),

where aaprx and baprx are defined as in the definition of the FD pro-
cedure.
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Figure 2.7: Plot of the mean square
deviation ∆ω̃2 for ω̃ = 2πHz,
β′ = 1/3, ∆t = 0.18∆tmax, and
N ∈ {1, 2, . . . , 51}.

Now that we know that ω̃aprx converges against ω̃ with rising N ,
another interesting question arises: How should the parameter ∆t be
chosen so that the convergence is quick? A good method to answer
this question is to investigate the mean square deviation of ω̃aprx from
ω̃ for different values of Nand ∆t. It is

∆ω̃2(N,∆t) =

N∑

j=0

N∑

k=0

p(j, k,N,∆t)
(
ω̃aprx

∣∣∣
M(∆t/2)=j,M(∆t)=k

−ω̃
)2

,

where p(j, k,N,∆t) is the probability for a sequence of measurement
results with M(∆t

2 ) = j and M(∆t) = k. Using basic probability the-
ory, this quantity can be converted into an expression that is straight
forward to evaluate:

∆ω̃2(N,∆t) =

N∑

j=0

p(j,N,
∆t

2
)

N∑

k=0

p(k,N,∆t)
(
ω̃aprx

∣∣∣
M(∆t/2)=j,M(∆t)=k

− ω̃
)2

,

where

p(j,N, τ) =

(
N

j

)





1 if (p1(τ) = 0 ∧ j = 0)

or (p1(τ) = 1 ∧ j = N),

p1(τ)
j
(
1 − p1(τ)

)N−j
otherwise.

with p1(τ) =
∣∣c1(t̃+ τ)

∣∣2.1 25 50
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Figure 2.8: Plot of the mean square
deviation ∆ω̃2 for ω̃ = 2πHz,
β′ = 1/3, ∆t = 0.4∆tmax, and
N ∈ {1, 2, . . . , 51}.

Figure 2.7 shows a plot of ∆ω̃2(N,∆t) for β′ = 1/3 (recall from

lemma 2.3.1 that
∣∣c1(t̃+ τ)

∣∣2, and thus p1(τ), depends on β′) and a
value of ∆t that is small as compared to ∆tmax. What is surprising
is the fact that, with rising N , the deviation first gets larger before it
eventually converges against zero (which it always does, according to
lemma 2.3.2). An explanation for this peculiar behavior may be that,

because ∆t is small, the parameter |c1|2 hardly evolves in between
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Figure 2.10: Plot from figure 2.9 for different values of β′: β′ = 0 (left plot),
β′ = 1

6
(middle plot), β′ = 1

2
(right plot).

measurements. Consequently, the pair (aaprx, baprx) is likely to be
close to (1, 1), and that’s where f is discontinuous (see figure 2.6).
This explanation is supported by figure 2.8. Here, ∆t is larger and
the above effect does not occur. When comparing figures 2.7 and
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Figure 2.9: Plot of the mean square
deviation ∆ω̃2 for ω̃ = 2πHz, and
β′ = 1/3. The quantity T = 3

2
N∆t is

the total run time of an FD
procedure. Each curve corresponds to
one value of N .

2.8, it appears that the convergence is the quicker, the closer ∆t is to
∆tmax. This assumption is supported by figure 2.9 where the value
of ∆ω̃2 is plotted over the total run time T = N ∆t

2 +N∆t = 3
2N∆t

of the FD procedure and over the parameter ∆t. Figure 2.10 shows
the same plot with different values for the amplitude β′. If β′ = 0
the Hamiltonian rotates Bloch points about the z axis and, therefore,
ω̃ = 0. In this case, the convergence behavior is always optimal.

What follows from the above observations? Answer: The conver-
gence of ω̃aprx towards ω̃ is usually slow! The rationale is that a user
of the FD procedure has to choose a small value for ∆t, unless he
knows the value of ∆t in good approximation. Solving this problem
by finding an alternative FD procedure could be an interesting topic
for future research. What would be quite sensational—as all things
that seem unlikely to be true—is a procedure with a convergence be-
havior similar to that shown in figure 2.11. Such a behavior would
make it possible to determine ω̃ in an, at least in theory, infinitesi-
mally short amount of time, even if there is no a priory information
about ω̃. A recipe to find the procedure with the quickest convergence
is easy to phrase but probably hard to execute:

0
T

0

Dtmax
Dt

0

DΩ�2

0

DΩ�2

Figure 2.11: Plot of the mean square
deviation ∆ω̃2 for a fictive alternative
FD procedure that shows very quick
convergence for small values of ∆t.

Given a fixed total measurement time, find the parameters (mea-
surement operators, distances between measurements, etc.) that
minimize ∆ω̃2, averaged over all possible values of ω̃, α, etc..

2.4 Frequency Tracking

Since the FD procedure provides a good way to get information about
the dynamics of a qubit, it is suggestive to construct tracking pro-
cedures from it. For example, one could take an FD procedure and,
instead of only once at the end, estimate the frequency ω̃ continu-
ously as measurement results come in. The current value of ω̃aprx
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Figure 2.12: Evolution of the parameter |c1|2 (dashed curve), the undisturbed
parameter |c̃1|2 (dotted curve), and the guess g1 (solid curve) under the influence
of an IFT procedure with β′

g = 1/2 (simulated with Trasim). The left side of the
plot shows the evolution at the beginning, the right side shows the evolution at
a later time, where ω̃aprx is already a good approximation of ω̃.

could then be used as a basis for a guess g1(t) of |c1(t)|2. What
follows is a precise definition of just this procedure.

CFT Procedure.

Full name: Continuous Frequency Tracking Procedure.
Definitions: Same as for FT procedure.
Parameters: Same as for FT procedure plus the amplitude β′

g .
Steps: Same as for the FT procedure, except for the following differ-

ences:
• The order in which the time intervals ∆t and ∆t

2 are assigned

to τ does matter. It should be ∆t
2 , ∆t, ∆t

2 , ∆t, . . . , or ∆t, ∆t
2 ,

∆t, ∆t
2 , . . . .

• After every two measurements in the main loop, a variable j is
incremented by one. Initially it is set to zero.

• After every two steps in the main loop, and after j has been
incremented, the approximation ω̃aprx is updated using aaprx =
M(∆t

2 )/j and baprx = M(∆t)/j. Initially, ω̃aprx is set to zero.

• |c1|2 is continuously approximated by

g1(t) = 1 − β′
g + β′

g cos
(∫ t

t0

dt′ ω̃aprx(t
′)
)
,

where t0 is the time when tracking started.

Figure 2.12 displays a simulated run of the CFT procedure. We see
that, although the frequency of the guessed evolution g1(t) eventually

matches that of the undisturbed evolution |c̃1(t)|2 quite closely, the
guess does not serve its actual purpose very well: It does not reflect
the dynamics of |c1(t)|2. Therefore, the deviation of this procedure is
very high. In addition, due to the frequent projective measurements,
the disturbance is very high as well. We conclude that the CFT
procedure is not very attractive for the purpose of tracking.

Let us turn to another tracking procedure that is also based on the
FD procedure:

IFT Procedure.

Full name: Initial Frequency Tracking Procedure.
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Figure 2.13: Evolution of the parameter |c1|2 (dashed curve), the undisturbed
parameter |c̃1|2 (dotted curve), and the guess g1 (solid curve) under the influence
of an IFT procedure with β′

g = 1/2 (not simulated—drawn by hand). More
specifically, only the evolution in the vicinity of t1 is displayed.

Definitions: Same as for FT procedure.
Parameters: Same as for FT procedure plus the amplitude β′

g , the

total tracking duration T > 3
2N∆t, and the reset interval R ∈

{1, 2, 3, . . .}.
Steps:

1. The value ω̃aprx is determined using the FD procedure. During

this process, the parameter |c1(t)|2 is approximated by g1(t) =
1
2 .

2. By measurement, the state vector |ψ〉 is transformed into |1〉.
3. |c1(t)|2 is approximated by

g1(t) = 1 − β′
g + β′

g cos
(
ω̃aprx(t− t1)

)
,

where t1 is the time when the FD procedure finished. Every R
periods of duration 2π/ω̃aprx, the quantity |c1(t)|2 is reset to |1〉.

A fictive run of the IFT procedure is visualized in figure 2.13. We
see that, after the frequency determination process has finished, the
curves corresponding to g1(t) and to |c1(t)|2 are quite close. One rea-
son, of course, is that, at this point, the guess approximately “knows”
the frequency ω̃. The other reason is that, through repeated resets at
times t1, t1 +R 2π

ω̃aprx
, t1 +2R 2π

ω̃aprx
, an so on, both curves are kept “in

sync”. It follows that the tracking deviation of the IFT procedure is
relatively small for long tracking durations where the impact of the
bad guess during the initial process of frequency determination can
be neglected. In fact, the tracking deviation could be brought close
to zero by replacing the parameter β′

g by a close estimation for the
amplitude β′. Such an estimation should be possible to get because,
as we know from lemma 2.3.1, the value of β′ depends only on the
Hamiltonian of the system under observation.

Although the IFT procedure, at first sight, looks like a very nice
tracking procedure, it has considerable disadvantages:
• The use of projective measurements causes a strong disruption

of the original dynamics of the qubit under observation. Con-
sequently, the disturbance is very high, even for short tracking
durations.

• The procedure is unstable: The guess does not adapt to (slight)
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changes in the qubit’s Hamiltonian that may happen under “real
world conditions”.



3 Estimation and Tracking with

Minimal Measurements

In this chapter we discuss tracking and postestimation procedures
using minimal measurements. We recall from chapter 1 that minimal
measurements are measurements with positive measurement opera-
tors. Note that, in general, finding optimal (or superoptimal) param-
eters for postestimation procedures utilizing minimal measurements
is harder than for procedures utilizing only projective measurements.
The reason is that minimal measurements are a superset of projective
measurements and, therefore, have more parameters.

3.1 Postestimation

Let us define an extension of the SPMP procedure defined in the last
chapter to minimal measurements:

SMMP Procedure.

Full name: Single Minimal Measurement Postestimation Procedure.
Parameters:

• A set of minimal measurement operators M0,M1, . . . ,MN−1.
• A guess function g1.

Steps:
1. The state ψ of the observed qubit is measured using the mea-

surement operatorsM0,M1, . . . ,MN−1. The outcome is denoted
by m, and the postmeasurement state by ψ′.

2. The parameters |c′1|
2

= |〈1|ψ′〉|2 is estimated by the guess g1(m).

Finding all optimal parameters of this procedure for the general
case of an arbitrary number of measurement operators seems far too
complicated. Therefore, we will limit ourselves to the special case
of two measurement operators, below. For the general case, it is
however possible to specify the optimal guess (under the common
side condition that the initial state of the qubit under observation is
totally unknown):

Lemma 3.1.1. Under the side condition that the initial state of the
observed qubit is totally unknown, the optimal guess for the SMMP
procedure (measurement operators: M0,M1, . . . ,M(N−1), N ≥ 0) is

g′1(m) =
〈1|MmM

†
m |1〉

〈0|M †
mMm |0〉 + 〈1|M †

mMm |1〉
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for all m with Mm 6= 0 (specifying a guess for the m with Mm = 0 is
pointless since the probability to get such an m as measurement result
is zero).

Proof. The guess results from minimizing the postestimation devia-
tion

v′[g′1(m)] =
∫
d%(ψ)

∑
m′:Mm′=0 p(m

′|ψ)
(
g′1(m

′) − |c′1(m′)|2
)2

,

where p(m′|ψ) is the probability to measure m′, and %(ψ) is the
uniform probability density of the initial states.

3.1.1 Postestimation with Two Outcomes

During the investigation of an SMMP procedure with two possible
outcomes, it is convenient to parameterize the measurement operators
according to the following decomposition:

Lemma 3.1.2. If {M0,M1} is a set of measurement operators de-
scribing a minimal measurement on a qubit, then the following de-
composition is possible:

M0 =
√
p0 |p0〉 〈p0| +

√
p1 |p1〉 〈p1| ,

M1 =
√

1 − p0 |p0〉 〈p0| +
√

1 − p1 |p1〉 〈p1| ,

where pj ∈ [0, 1] (j ∈ {0, 1}) and 〈p0|p1〉 = 0.

Proof. By definition the operators M0 and M1 are positive. There-
fore, they can be spectrally decomposed into

M0 = a0 |p0〉 〈p0| + a1 |p1〉 〈p1| ,
M1 = b0 |q0〉 〈q0| + b1 |q1〉 〈q1| ,

where the coefficients aj , bj (j ∈ {0, 1}) are greater or equal to
zero, and the vectors |pj〉, |qj〉 satisfy the orthogonality conditions

〈p0|p1〉 = 0 and 〈q0|q1〉 = 0. With the completeness relation M †
0M0+

M †
1M1 =

�
and elementary algebraic manipulations it follows that

the conjectured decomposition is possible.

Using the above parameterization, we can define the promised
SMMP procedure:

SMMP2 Procedure.

Full name: Single Minimal Measurement Postestimation Procedure
with two Outcomes.

Parameters:
• A set of parameters pj ∈ [0, 1] (j ∈ {0, 1}) and 〈p0|p1〉 = 0

characterizing the measurement operators.
• A guess g′1.

Steps:
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1. The state ψ of the qubit under observation is measured using
the measurement operators

Mm =
√
αm0 |p0〉 〈p0| +

√
αm1 |p1〉 〈p1| ,

where α0
j = pj , and α1

j = 1− pj (j ∈ {0, 1}). The post measure-
ment state of the qubit is denoted by ψm.

2. The parameter parameter |c′1(m)|2 = |〈1|ψ′
m〉|2 is estimated,

using the guess g′1.

The optimal guess for the SMMP2 procedure can be specified in a
small and compact form:

Theorem 3.1.1. If the initial state of the observed qubit is totally
unknown, then the optimal guess for the SMMP2 procedure is

g′1(m) =
αm0 |β0|2 + αm1 |β1|2

αm0 + αm1
, (3.1.1)

where βj = 〈1|pj〉, and the parameters αmj and |pj〉 are defined as in
the definition of that procedure.

Proof. Equation (3.1.1) follows by insertion of the measurement op-
erators defined by αmj and |pj〉 into the best guess according to
lemma 3.1.1.

What follows is the disturbance and deviation of the SMMP2 pro-
cedure with optimal guess, unfortunately not in a small and compact
form. As mentioned below, the presented expressions are not appli-
cable to all possible parameter combinations. Because the missing
combinations represent only a small set of special cases, and because
it is reasonable to expect that it is sufficient to know values in their
vicinity (i.e. we assume continuity), we dare to exclude these from
further discussion.1

Lemma 3.1.3. If the initial state of the observed system is totally
unknown, if the optimal guess is used, and if pj /∈ {0, 1, pj−1} (j ∈
{0, 1}), then the disturbance and deviation of the SMMP2 procedure

1Note that when discussing the generalization of the SMMP2 procedures to
general measurements in the next chapter, no parameter combinations are
excluded.
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are

s =
1

12

∑

m∈{0,1}

(
αm0
(
1 + 2 |β0|2

)
+ αm1

(
3 − 2 |β0|2

)

+
6

(αm0 − αm1 )3

(
αm0

4 |β0|2 − 4αm0
3αm1 |β0|2

(
2 |β0|2 − 1

)

+ 4αm0 α
m
1

3(|β0|2 − 1
)(

2 |β0|2 − 1
)
− αm1

4(|β0|2 − 1
)2

+ αm0
2αm1

2
(
2 ln

αm0
αm1

+ 6 |β0|2
(
1 + 2 ln

αm0
αm1

(|β0|2 − 1)
)
− 3
))

+ 4
(
2
√
αm0 α

m
1 |β0|2

(
|β0|2 − 1

)
− αm0 |β0|2

(
|β0|2 + 1

)

− αm1
(
|β0|2 − 2

)(
|β0|2 − 1

))
)

and

v′ =
∑

m∈{0,1}

αm0 α
m
1

(αm0 − αm1 )3(αm0 − αm1 )

1∑

j=0

(
αmj

2αm1−j

(
ln
αm0
αm1

−2(−1)j

+3
(
2 ln

αm0
αm1

−3(−1)j
)
|β0|2

(
|β0|2−1

))
−(−1)jαmj

3 |β0|2
(
|β0|2−1

))
,

where β0 = 〈1|p0〉, and the parameters pj , α
m
j and |pj〉 are defined as

in the definition of that procedure.

Proof. According to their definition in chapter 1, the disturbance and
deviation are for the the SMMP2 procedure

s =
∫
dψ %(ψ)

∑
m∈{0,1} : Mm 6=0 p(m|ψ)

(
|c′1(m)|2 − |c1|2

)2
,

v′ =
∫
dψ %(ψ)

∑
m∈{0,1} : Mm 6=0 p(m|ψ)

(
g1 − |c′1(m)|2

)2
,

where %(ψ) is the probability density of the premeasurement states,
and p(m|ψ) is the probability to the result m, given an initial state
ψ. The conjectured expressions follow by straight forward, albeit
lengthy, calculation.0 1
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Figure 3.1: Numerical approximation
of the disturbance deviation graph of
the SMMP2 procedure.

Via the disturbance and deviation, it is possible to find the op-
timal and superoptimal parameters of the SMMP2 procedure. One
way to accomplish this is to minimize the deviation under the side
condition that the disturbance is fixed (and, additionally, the other
way round, if the superoptimal parameters are desired). Such a cal-
culation may be done analytically or numerically. Another method is
to numerically sample over all possible parameter combinations, for
each sample, calculate the disturbance and deviation. By comparing
the resulting values an approximation for the optimal and superopti-
mal parameters can be obtained. This latter method is what we will
now discuss.
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Figure 3.1 shows a graph visualizing the disturbance and devi-
ation corresponding to all parameter combinations (p0, p1, |β0|2) ∈
{0, 0.01, 0.02, . . . , 1}3, except those that are excluded in lemma 3.1.3
and, because symmetry suggests it, those with p1 < p0 (this speeds
up the data generation process). It is to be noted that in the lower
right part the plot is very “thin”, probably because the sampling grid
wasn’t fine enough. The displayed disturbance and deviation values
were generated with a computer program that essentially comprises
the following steps:

p̄ ∆p |β0|
2

0.50000 0.98000 0.50000
0.50000 0.98000 0.50000
0.50000 0.98000 0.50000
0.50000 0.98000 0.50000
0.50000 0.98000 0.50000
0.50000 0.97000 0.50000
0.50000 0.97000 0.50000
0.50000 0.96000 0.50000
0.50000 0.96000 0.50000
0.50000 0.95000 0.50000
0.50000 0.95000 0.50000
0.50000 0.94000 0.50000
0.50000 0.94000 0.50000
0.50000 0.93000 0.50000
0.50000 0.93000 0.50000
0.50000 0.92000 0.50000
0.50000 0.92000 0.50000
0.50000 0.91000 0.50000
0.50000 0.91000 0.50000
0.50000 0.90000 0.50000
0.50000 0.90000 0.50000
0.50000 0.89000 0.50000
0.50000 0.88000 0.50000
0.50000 0.88000 0.50000
0.50000 0.87000 0.50000
0.50000 0.87000 0.50000
0.50000 0.86000 0.50000
0.50000 0.85000 0.50000
0.50000 0.85000 0.50000
0.50000 0.84000 0.50000
0.50000 0.83000 0.50000
0.50000 0.83000 0.50000
0.50000 0.82000 0.50000
0.50000 0.81000 0.50000
0.50000 0.80727 0.50000
0.50000 0.80000 0.50000
0.50000 0.79000 0.50000
0.50000 0.78000 0.50000
0.50000 0.77662 0.50000
0.50000 0.77000 0.50000
0.50000 0.76000 0.50000
0.50000 0.75000 0.50000
0.50000 0.74000 0.50000
0.50000 0.73595 0.50000
0.50000 0.73000 0.50000
0.50000 0.71856 0.50000
0.50000 0.71000 0.50000
0.50000 0.69963 0.50000
0.50000 0.69000 0.50000
0.50000 0.67909 0.50000
0.50000 0.67000 0.50000
0.50000 0.66283 0.50000
0.50000 0.65081 0.50000
0.50000 0.64295 0.50000
0.50000 0.63122 0.50000
0.50000 0.62000 0.50000
0.50000 0.60977 0.50000
0.50000 0.60000 0.50000
0.50000 0.58841 0.50000
0.50000 0.57383 0.50000
0.50000 0.56647 0.50000
0.50000 0.55257 0.50000
0.50000 0.53686 0.50000
0.50000 0.52760 0.50000
0.50000 0.51193 0.50000
0.50000 0.49463 0.50000
0.50000 0.48640 0.50000
0.50000 0.46813 0.50000
0.50000 0.44776 0.50000
0.50000 0.44000 0.50000
0.50000 0.41919 0.50000
0.50000 0.39698 0.50000
0.50000 0.38802 0.50000
0.50000 0.36413 0.50000
0.50000 0.33740 0.50000
0.50000 0.32963 0.50000
0.50000 0.30036 0.50000
0.50000 0.26832 0.50000
0.50000 0.23600 0.50000
0.50000 0.21440 0.50000
0.50000 0.17805 0.50000
0.50000 0.13583 0.50000
0.50000 0.08176 0.50000
0.50000 0.03007 0.50000

Table 3.1: Numerical approximation of
the superoptimal parameters of the
SMMP2 procedure.

1. A table, we call it SV table, is created. Its columns correspond
to disturbances, and its rows to deviations. For example column
one may correspond to all disturbances s ∈ [0, 0.1), column two to
s ∈ [0.1, 0.2), and so on. The cells in the table are initialized with
empty lists.

2. For each sampled parameter set, the disturbance and deviation is
calculated, and the set is appended to the list in the corresponding
cell in the SV table.

The graph in figure 3.1 is a density plot where the black points cor-
respond to nonempty lists in the SV table.

Once the table is filled, it is simple to get an approximation for
the optimal (superoptimal) parameters of the SMMP2 procedure. All
that needs to be done is to extract the bottommost (and leftmost)
non empty cells and take the arithmetic mean of all the parameter
sets contained in each such cell. The result is displayed in table 3.1
where, to ease interpretation of the results, the parameters p0 and p1

are encoded into p̄ = 1
2 (p0 + p1) and ∆p = p1 − p0. We see that p̄ is

equal to 1
2 throughout. The same is true for |β0|2. This means that

the parameter ϑ of

|p0〉 = eiχ
(
cos ϑ2 |0〉+eiϕ sin ϑ

2 |1〉
)
, χ ∈ [0, 2π), ϕ ∈ [0, 2π), ϑ ∈ [0, π]

satisfies cos ϑ2 = 1/
√

2. Consequently, ϑ = π
2 and, thus, the Bloch

point P (p0) lies on the equator of the Bloch sphere. With the help
of lemma 2.0.2 we infer (recall that, due to symmetry considerations,
any values with p1 < p0 were not sampled—now they must be in-
cluded in the form of ∆p ∈ [−1, 0)):

The set of superoptimal parameters for the SMMP2 procedure
comprises

• all p0, p1 with p̄ = 1
2 and ∆p ∈ [−1, 1],

• all |p0〉, |p1〉, where P (p0) and P (p1) lie on diametrically op-
posing points on the Bloch sphere’s equator (see figure 3.2).

The disturbance deviation graph for the SMMP2 procedure with
these parameters is displayed in figure 3.3. As expected the it roughly
corresponds to the bottom- and leftmost values of the density plot in
figure 3.1.

By inserting the superoptimal parameters into the optimal guess
(see lemma 3.1.1) we get a surprising result:
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The superoptimal guess for the the SMMP2 is g′1(m) = 1
2 .

P (p0)

P (p1)

P (ψ)

Figure 3.2: The Bloch points
corresponding to the optimal
parameters |p0〉 and |p1〉 lie on the
equator of the Bloch sphere. Due to
measurement, the Bloch point of the
observed qubit moves on a great circle
towards one of them.
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Figure 3.3: Disturbance deviation
graph of the SMMP2 procedure with
optimal parameters.

To get some insight into why, although the guess is independent of
the measurement readout, the deviation can, by variation of the pa-
rameters, be continuously lowered to zero (recall figure 3.3), let us
investigate the two special cases:
• For ∆p = 1 the measurement operators are projective: M0 =

|p1〉 〈p1|, M1 = |p0〉 〈p0|. Thus, they transform the state vector ψ
of the estimated qubit into |p0〉 or |p1〉. On the Bloch sphere this
transformation can be visualized as a rotation of the Bloch point
P (ψ) onto the equator. The consequence is that |c′1|

2
evaluates to

1
2 and, thus, the deviation is zero (the corresponding disturbance,
according to figure 3.3, is 1

12 ).
• For ∆p = 0 the measurement operators are proportional to the unit

operator: M0 = 1
2

�
, M1 = 1

2

�
. Obviously, they do not transform

|ψ〉 and the Bloch point P (ψ) is not moved. Consequently, the
disturbance is zero (the corresponding deviation is 1

12 ).
We infer that all other possible disturbance deviation displayed in
figure 3.3 can be achieved by varying ∆t.

The result that it is best to always choose 1/2 as a guess is, of
course, not satisfying. An important question arises: “Is this guess
also the best guess for estimation procedures that are not limited to
minimal measurements?”. As we will see in the next chapter, this
question, fortunately, has to be answered in the negative.

3.2 N-Series Tracking

In this section we will touch a topic that has been discussed intensely
by Audretsch et. al. [AKS01]. It is roughly based on the following
tracking procedure which was designed for observing the evolution of
the parameter |c1(t)|2 of a qubit with Hamiltonian

HI = ~D(|1〉 〈0| + |0〉 〈1|),

where the factor D > 0 controls the frequency of the evolution.

NST Procedure.

Full name: N-Series Tracking Procedure.
Parameters:
A set of parameters pj ∈ [0, 1] (j ∈ {0, 1}) and 〈p0|p1〉 = 0 charac-

terizing the measurement operators.
The temporal distance between measurements, τ .
The guess g1(t) for the parameter |c1(t)|2 of the observed system.
The number of measurements per N-series, N >= 1.
The number of N-series to perform, Z.

Steps: The state ψ(t) of the qubit is sequentially being measured
using the measurement operators

Mm =
√
αm0 |0〉 〈0| +

√
αm1 |1〉 〈1| ,
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1

0

1

0

1

0

Figure 3.4: Simulation of the FST procedure applied to a qubit with a Hamiltonian of the form HI = ~D(|1〉 〈0| + |0〉 〈1|),
D > 0 (generated from data that Audretsch et al. used for plots in a publication [AKS01]). The parameters used are
p̄ = 1

2
(p0 + p1) = 1/2 and ∆p = p1 − p0 = −0.3 (top plot), ∆p = 0.01 (middle plot), ∆p = 0.08 (bottom plot). The dotted

curve corresponds to the undisturbed evolution (i.e. without measurements) of the qubit’s parameter |c1|2, the dashed
curve to actual evolution of |c1|2, and the solid one to the guess g1(N0,N) = (r − p0)/(∆p).

where α0
j = pj , and α1

j = 1−pj (j ∈ {0, 1}). The temporal distance
between individual measurements is τ and the total number of
measurements performed is N Z. For each N-series (i.e. each
subsequent set of N measurements) the number of measurement
outcomes with readout m = 0 is counted and stored in the variable
N0. This variable is used to update the guess g1(t) once after each
N-series.

A guess was proposed and motivated by Audretsch et. al. [AKS01]:

g1(N0, N) =
r − p0

∆p
,

where r = N0/N and, as in the previous section, ∆p = p1−p0. Three
simulated runs of the NST procedure with this guess are displayed
in figure 3.4. The measurements used for the top plot are almost
projective. Therefore the dynamics of |c1|2 is closely matched by the
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guess. The price is, of course, a high disturbance. In the middle plot,
the measurements operators are almost unit operators and thus, the
disturbance is low but the guess is far off. What is interesting, is
the bottom plot. Here, the evolution of |c1|2 is moderately disturbed
and it is still possible to somewhat deduce its dynamics by observing
the guess. To increase the quality of the guess, Audretsch et. al.
proposed post processing by means of a Wiener filter and a cutoff filter
(it cuts of small frequencies in the Fourier spectrum of the guess).
Some words on these filters:

• Since tracking is, by definition, a real time process, the filters also
need to be applied in real time. Therefore, it may take some
amount of time until the filtered information becomes good.

• In general, the Wiener filter and the cutoff filter require their user
to decide what information is relevant and which information is to
be regarded as noise. It is hard, if not impossible, to automate this
process.

It should be noted that, by discarding “noise”, the filters also discard
information.

Let us discuss an alternative guess that is based on our concept
of disturbance and deviation (note that this guess, as stated below,
cannot be used in conjunction with all possible measurement opera-
tors):

Lemma 3.2.1. If the initial state of the observed qubit is completely
unknown, if p0 /∈ {0, 1}, and if p1 /∈ {0, 1}, then the optimal guess
for the NST procedure is

g1(N0, N) =
pN0

1 (1 − p1)
N−N0

pN0

0 (1 − p0)N−N0 + pN0

1 (1 − p1)N−N0

, (3.2.1)

where N0 is the number of measurement outcomes with readout m = 0
in the last N-series, and the parameters pj and N are defined as in
the definition of that procedure.

Proof. It can be shown [AKS01] that the application of N measure-
ments in an N-series equals a single measurement with N+1 possible
outcomes N1 ∈ {0, 1, 2, . . . , N}. The measurement operator corre-
sponding to outcome N1 is

M̃(N0, N) =
√(

N
N0

)
MN0

0 M
(N−N0)
1 .

Equation (3.2.1) follows by insertion of this operator into the optimal
guess according to lemma 3.1.1.

The result of simulations of the NST procedure with that guess is
displayed in figure 3.5. We see that, although the disturbance and
deviation are low, the dynamics of the system cannot be deduced
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Figure 3.5: Simulation of the FST procedure with the same parameters as in figure 3.4, except for the guess g1(N0,N)
which is calculated according to lemma 3.2.1 (simulated with Trasim).

by looking at the curve corresponding to that guess. What we learn
from this result is that disturbance and deviation are not necessarily
good measures for gauging the quality of a tracking procedure.
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4 Estimation and Tracking with

General Measurements

The term general measurements refers to measurements that have
no restrictions, i.e. all measurements according to the Measurement
Postulate. This means that in the postestimation and tracking proce-
dures that we discuss in this chapter, the measurements usually can
be chosen at will, given that they satisfy minor side conditions such as
a maximal number of measurement operators. This also means that
finding the optimal or superoptimal parameters of those procedures
is tedious, because there are so many of them.

4.1 Non-Sequential Postestimation

The term non-sequential postestimation refers to postestimation pro-
cedures that utilize only a single measurement instead of a sequence
of measurements. In particular, we use the following definition:

SMP Procedure.

Full name: Single Measurement Postestimation Procedure.
Parameters:

• A set of measurement operators M0,M1, . . . ,MN−1.
• A guess function g1.

Steps:
1. The state vector |ψ〉 of the observed qubit is measured using

the measurement operators M0,M1, . . . ,MN−1. The readout is
denoted by m and the postmeasurement state by |ψ′

m〉.
2. |c′1(m)|2 = |〈1|ψ′

m〉|2 is estimated as g1.

To find all the optimal parameters for this procedure for an ar-
bitrary number of measurement operators is probably quite compli-
cated. Therefore, we will discuss this problem only for the case of one
and two measurement operators. It is, however, possible to specify
the optimal guess for the general case:

Lemma 4.1.1. Under the side condition that the initial state of the
observed qubit is completely unknown, the optimal guess for the SMP
procedure is

g′1(m) =
〈1|MmM

†
m |1〉

〈0|M †
mMm |0〉 + 〈1|M †

mMm |1〉

for all m with Mm 6= 0.
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Proof. The proof is identical to the proof of lemma 3.1.1 (optimal
guess of the SMMP procedure) with the only difference that all ref-
erences to operators of minimal measurements should be replaced by
references to operators of general measurements.

4.1.1 Postestimation with One Outcome

For the sake of completeness, before discussing more complicated
SMP procedures, we start with a truly simple case:

SMP1 Procedure.

Full name: Single Measurement Postestimation Procedure with One
Possible Outcome.

Parameters:
• A measurement operator M .
• A guess function g1.

Steps:
1. The state vector |ψ〉 of the observed qubit is measured using

the measurement operator M . The post measurement state is
denoted by |ψ′〉.

2. |c′1|2 = |〈1|ψ′〉|2 is estimated.

The optimal parameters may be obvious:

Lemma 4.1.2. The optimal parameters for an SMP1 procedure are

g′1 =
1

2
,

M = U ,

where U can be any unitary operator.

Proof. The value of the optimal guess follows by minimizing the de-
viation v′(g′1) which, as can be shown, is equal to g′1

2 − g′1 + 1/3. We
see that the deviation does not depend on the measurement operator
M . Therefore the choice of M does not matter, i.e. the parame-
ters are always optimal as long as g′1 = 1/2. Certainly M needs to
satisfy the completeness relation M †M =

�
that is required by the

Measurement Postulate. Therefore it must be unitary.

0 1�3 s

1
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Figure 4.1: Disturbance-deviation
graph of the SMP1 procedure with
optimal parameters.

With the optimal parameters, the procedure’s disturbance s and
deviation v′ are, proof being omitted, s = 1

3 (1 − |〈1|U |1〉|2) and
v′ = 1/12. Their knowledge allows the creation of a disturbance-
deviation graph as displayed in figure 4.1. We see that, by bad choice
of the measurement operator, the parameter |c1|2 can be considerably
disturbed.
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4.1.2 Postestimation with Two Outcomes

After the trivial case in the last subsection, let us turn to something
more interesting:

SMP2 Procedure.

Full name: Single Measurement Postestimation Procedure with Two
Outcomes.

Parameters:
• Two measurement operators M0,M1.
• A guess function g1.

Steps:
1. The state vector |ψ〉 of the observed qubit is measured using the

measurement operators M0,M1. The readout is denoted by m
and the postmeasurement state by |ψ′

m〉.
2. |c′1(m)|2 = |〈1|ψ′

m〉|2 is estimated by the guess g1.

The best guess of that procedure is, of course, the one we found
in lemma 4.1.1. Using it, we are able to determine the set of all
superoptimal measurement operators (note that the determination of
the set of all optimal operators may be more tedious because it is
likely to be larger than the set of all superoptimal operators). The
result, unfortunately, is very complicated:

Lemma 4.1.3. Let

a0 ∈ [0, 1], b0 ∈ [0, 1], βm ∈ [0, 1], γ0 ∈ [0, 1],

a1, b1, γ1 :





(a1, b1, γ1) ∈ {(
√

1 − a2
0,
√

1 − b20, γ0),

(
√

1 − b20,
√

1 − a2
0, 1 − γ0)} for a0 6= b0,

a1 =
√

1 − a2
0, b1 =

√
1 − a2

0, γ1 ∈ [0, 1] for a0 = b0,

be a set of parameters that satisfy the following condition: There is
no other such set of parameters (distinguished by a tilde) with

s(β̃0, β̃1, ã0, ã1, b̃0, b̃1, γ̃0, γ̃1) = s(β0, β1, a0, a1, b0, b1, γ0, γ1) ∧
v′(β̃0, β̃1, ã0, ã1, b̃0, b̃1, γ̃0, γ̃1) < v′(β0, β1, a0, a1, b0, b1, γ0, γ1)

or with

v′(β̃0, β̃1, ã0, ã1, b̃0, b̃1, γ̃0, γ̃1) = v′(β0, β1, a0, a1, b0, b1, γ0, γ1) ∧
s(β̃0, β̃1, ã0, ã1, b̃0, b̃1, γ̃0, γ̃1) < s(β0, β1, a0, a1, b0, b1, γ0, γ1)
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where the disturbance and postestimation deviation are

s =
∑

m

Pm − 1

3

∑

m

(
a2
mβm(1 + γm) + b2m(1 − βm)(2 − γm)+

2ambm
√
βm(1 − βm)

√
γm(1 − γm)

)
+

1

3
,

v′ =
∑

m

Pm − 1

2

∑

m

{
0 for am = bm = 0,
(a2

mβm+b2m(1−βm))2

a2
m+b2m

otherwise,

Pm =





1
3a

3
m for am=bm,

1
2b

2
m(βm − 1)2 for am 6=bm, am=0,

1
2a

2
mβ

2
m for am 6=bm, bm=0,

1
2(a2

m−b2m)2

(
a6
mβ

2
m + b6m(1 − βm)2

+a4
mb

2
mβm(4 − 7βm)

+a2
mb

4
m(1 − βm)(7βm − 3)

)

+
2a4

mb
4
m

(a2
m−b2m)3

(
1 − 6βm(1 − βm)

)
log am

bm
otherwise.

Then the measurement operators M0, M1 that make an SMP2 proce-
dure superoptimal (under the side condition that any observed qubit
is completely unknown) are operators of the form

Mm = UmDmVm,

where Dm, Vm, and Um are defined as follows (note that, for any
parameter combination, there are always operators that satisfy the
conditions below):
• Dm = am |0〉 〈0| + bm |1〉 〈1|.
• Vm is a unitary operator with |〈0|Vm |1〉|2 = γm and, in the case

that a0 6= b0 ∧ γ0 /∈ {0, 1}, additionally

arg
(
(a2

0 − b20) 〈0|V †
0 |0〉 〈0|V0 |1〉

)
=

arg
(
−(a2

1 − b21) 〈0|V †
1 |0〉 〈0|V1 |1〉

)
.

• Um is a unitary operator with |〈0|χm〉|2 = βm and
(
− arg 〈0|χm〉+arg 〈1|χm〉+arg 〈0|ξm〉−arg 〈1|ξm〉

)
mod 2π = 0,

where |χm〉 = U †
m |1〉 and |ξm〉 = Vm |1〉.

Proof. The starting point of the proof follows from the definition of
optimality. Initially it is required that the operators M0,M1 and the
guesses g′0, g

′
1 satisfy the following condition:

There are no other operators M̃0, M̃1 and guesses g̃′0, g̃
′
1 such

that

s(M̃0, M̃0, g̃
′
0, g̃

′
1) = s(M0,M0, g

′
0, g

′
1) ∧

v′(M̃0, M̃0, g̃
′
0, g̃

′
1) < v′(M0,M0, g

′
0, g

′
1),
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where s and v′ are the disturbance and postestimation deviation,
respectively.

The optimal guess can, as we have seen before, be calculated by min-
imizing v′. After inserting them the above condition converts into
a condition on just M0 and M1. The next step is to parameterize
these operators so that the any integrals in s and v′ over the qubit’s
initial state vector can be solved. It turns out that a good strategy is
to decompose the operators into a singular value decomposition and
parameterize the corresponding operators Um, Dm, Vm using real val-
ues. After solving the integrals, more parameters can be eliminated,
also by the introduction of the additional condition for superoptimal-
ity. The result is the set of conditions visible in this lemma. That the
conditions on Um and Vm can be satisfied for all possible parameter
combinations is best proofed by giving examples on how to construct
these operators. Such examples are provided by the lemmas 4.1.4
and 4.1.5, found below.

To numerically find parameters combinations that satisfy the con-
dition in the above lemma, a little computer program was used (an
analytical solution may also be possible—I haven’t tried it). An im-
portant data structure in the program is the vector ~s whose entries are
sets of parameter combinations {a0, a1, b0, b1, β0, β1, γ0, γ1} and some
extra information like the corresponding disturbance and postesti-
mation deviation. The entries are sorted corresponding to the dis-
turbance, for example s0 may contain an entry whose disturbance
is between 0 and 0.1, s1 an entry whose disturbance is between 0.1
and 0.2, and so on (the precise ranges can be set using certain pa-
rameters in the program). What the program does is to sample over
all parameter combinations. For each combination, it calculates the
disturbance s and postestimation v′ deviation. It then looks up the
corresponding entry in the vector ~s. If the entry contains a param-
eter combination with a lower postestimation deviation than that of
the new parameter combination, it does nothing, otherwise it up-
dates the entry with the new parameters. The output of the program
is the vector ~s which contains the best parameter combinations for
each disturbance range. Of course, the parameter combinations are
not perfect since, due to the sampling process, only a subset of all
possible combinations can be checked.

1/18

1/12

v’

s

Figure 4.2: Disturbance s and
postestimation deviation v′ plotted
from the data in the table 4.1.

The results of a run of the program are displayed in table 4.1.
What catches the eye are the frequent “jumps” in the parameters.
For example in the fifth line the value of a0 is 0.040404, one line be-
low it is 0.989899, and on the sixth line it jumps back to something
small: 0.10101. The explanation is that there are several different pa-
rameter combinations possible for an optimal disturbance-deviation
pair. Which one gets chosen by the program depends on the way the
samples are selected and on numerical inaccuracies.

Figure 4.2 displays the disturbance-estimation graph generated
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from the values in the table that we just discussed. A peculiar fea-
ture of that graph is the kink close to where the disturbance is 0 and
where the deviation is 1/18. An explanation for it may be that the
grid used for sampling over the parameters was not fine enough and
that, therefore, some values that would make the graph smoother
were missed. On the other hand, the kink may be natural. But
let us not worry about too much about this peculiarity and turn to
something else. We see that the SMP2 procedure is better than the
equivalent SMMP2 procedure which is based solely on minimal mea-
surements. With the definition of minimal measurements, it follows
that the measurement operators Mm = UmDmVm described by the
values in table 4.1 cannot all be positive. To construct the operators
from these values we must find unitary operators Um and Vm that
satisfy the conditions in lemma 4.1.3. The following two lemmas show
us one way to accomplish that.

Lemma 4.1.4. If m ∈ {0, 1}, am ∈ [0, 1], bm ∈ [0, 1], and γm ∈ [0, 1],
then the operator

Vm =
√

1 − γme
i arg xm |0〉 〈0| + √

γme
−iπ/2 |0〉 〈1|

+
√
γm |1〉 〈0| +

√
1 − γme

i(π/2−arg xm) |1〉 〈1|

with

x0 = a2
0 − b20, x1 = −(a2

1 − b21)

is unitary and satisfies the conditions |〈0|Vm |1〉|2 = γm and

arg
(
(a2

0 − b20) 〈0|V †
0 |0〉 〈0|V0 |1〉

)
=

arg
(
−(a2

1 − b21) 〈0|V †
1 |0〉 〈0|V1 |1〉

)
.

Proof. That Vm is unitary and satisfies the given conditions follows
by insertion and straight forward computation.

Lemma 4.1.5. If m ∈ {0, 1}, βm ∈ [0, 1], and |ξm〉 is a vector in
qubit state space, then the operator

Um =
√

1 − βme
i(arg〈1|ξm〉−π/2) |0〉 〈0|+

√
βme

i(π/2+arg〈0|ξm〉) |0〉 〈1|
+
√
βme

−i arg〈0|ξm〉 |1〉 〈0| +
√

1 − βme
−i arg〈1|ξm〉 |1〉 〈1|

is unitary and satisfies the conditions |〈0|χm〉|2 = βm and

(
− arg 〈0|χm〉+arg 〈1|χm〉+arg 〈0|ξm〉−arg 〈1|ξm〉

)
mod 2π = 0,

where |χm〉 = U †
m |1〉.

Proof. Insertion and straight forward computation proves that Vm
satisfies the given conditions and is unitary.



4.1 Non-Sequential Postestimation 43

v′ s a0 a1 b0 b1 β0 β1 γ0 γ1

1.54838e-18 0.0555556 0 0 1 1 0.333333 0.666667 0 1
0.00139737 0.0551754 0.0808081 0 1 0.99673 0.666667 0.333333 0.989899 0.010101
0.00215049 0.0549066 0.10101 0 1 0.994885 0.333333 0.656566 0.020202 0.979798
0.00349971 0.0544498 1 0.991341 0.131313 0 0.323232 0.656566 0.030303 0.969697
0.00446202 0.0517227 0.040404 0.141774 0.989899 0.999183 0.646465 0.333333 0.939394 0.0606061
0.00549089 0.0495278 0.989899 0.99673 0.0808081 0.141774 0.363636 0.676768 0.0808081 0.919192
0.0064734 0.0475727 0.10101 0.141774 0.989899 0.994885 0.373737 0.636364 0.121212 0.878788
0.00750355 0.0460888 0.989899 0.992627 0.121212 0.141774 0.616162 0.383838 0.838384 0.161616
0.00850195 0.044759 0.141414 0.141774 0.989899 0.989951 0.373737 0.626263 0.161616 0.838384
0.00928516 0.0438229 0.151515 0.141774 0.989899 0.988455 0.40404 0.59596 0.222222 0.777778
0.0105085 0.0423433 0.171717 0.141774 0.989899 0.985146 0.606061 0.40404 0.777778 0.222222
0.0113412 0.0414573 0.989899 0.983332 0.181818 0.141774 0.424242 0.575758 0.282828 0.717172
0.012496 0.0402149 0.141414 0.19999 0.979798 0.989951 0.585859 0.40404 0.737374 0.262626
0.0133911 0.0390587 0.151515 0.19999 0.979798 0.988455 0.474747 0.525253 0.424242 0.575758
0.0144829 0.0374564 0.171717 0.19999 0.979798 0.985146 0.434343 0.575758 0.313131 0.686869
0.0153783 0.0362475 0.979798 0.983332 0.181818 0.19999 0.505051 0.494949 0.515152 0.484848
0.0165067 0.0352366 0.979798 0.979381 0.20202 0.19999 0.414141 0.575758 0.30303 0.69697
0.017517 0.0337978 0.212121 0.19999 0.979798 0.977243 0.464646 0.525253 0.424242 0.575758
0.018332 0.0328835 0.979798 0.974996 0.222222 0.19999 0.494949 0.505051 0.484848 0.515152
0.0195069 0.0318674 0.969697 0.981411 0.191919 0.244311 0.494949 0.505051 0.484848 0.515152
0.0202288 0.0310401 0.969697 0.979381 0.20202 0.244311 0.494949 0.505051 0.484848 0.515152
0.021517 0.0301419 0.262626 0.19999 0.979798 0.964898 0.545455 0.474747 0.575758 0.424242
0.0225171 0.0287073 0.969697 0.972639 0.232323 0.244311 0.494949 0.505051 0.484848 0.515152
0.0233166 0.0279753 0.969697 0.97017 0.242424 0.244311 0.494949 0.505051 0.484848 0.515152
0.0241325 0.0272643 0.969697 0.96759 0.252525 0.244311 0.494949 0.505051 0.484848 0.515152
0.0255212 0.0264784 0.232323 0.281382 0.959596 0.972639 0.474747 0.545455 0.424242 0.575758
0.0263944 0.0254688 0.959596 0.97017 0.242424 0.281382 0.494949 0.505051 0.494949 0.505051
0.0275261 0.0246474 0.292929 0.244311 0.969697 0.956134 0.484848 0.515152 0.474747 0.525253
0.0284208 0.023986 0.969697 0.952981 0.30303 0.244311 0.505051 0.494949 0.505051 0.494949
0.0293135 0.0233793 0.969697 0.94971 0.313131 0.244311 0.505051 0.494949 0.505051 0.494949
0.030527 0.0223473 0.292929 0.281382 0.959596 0.956134 0.474747 0.525253 0.454545 0.545455
0.0314369 0.021624 0.959596 0.952981 0.30303 0.281382 0.505051 0.494949 0.505051 0.494949
0.0324952 0.0209193 0.949495 0.959171 0.282828 0.313782 0.505051 0.494949 0.505051 0.494949
0.0333437 0.0203281 0.949495 0.956134 0.292929 0.313782 0.505051 0.494949 0.505051 0.494949
0.0342025 0.0197532 0.949495 0.952981 0.30303 0.313782 0.505051 0.494949 0.505051 0.494949
0.0350707 0.0191939 0.949495 0.94971 0.313131 0.313782 0.505051 0.494949 0.505051 0.494949
0.0359475 0.0186493 0.949495 0.94632 0.323232 0.313782 0.505051 0.494949 0.505051 0.494949
0.0375333 0.0179311 0.313131 0.34284 0.939394 0.94971 0.464646 0.535354 0.444444 0.555556
0.0384789 0.0171416 0.939394 0.94632 0.323232 0.34284 0.505051 0.494949 0.505051 0.494949
0.039524 0.0166043 0.949495 0.931541 0.363636 0.313782 0.505051 0.494949 0.505051 0.494949
0.0404318 0.016123 0.949495 0.927535 0.373737 0.313782 0.494949 0.505051 0.494949 0.505051
0.0411097 0.0156504 0.939394 0.935421 0.353535 0.34284 0.505051 0.494949 0.505051 0.494949
0.0425383 0.0149318 0.343434 0.369344 0.929293 0.939177 0.484848 0.515152 0.474747 0.525253
0.0434199 0.0144234 0.929293 0.935421 0.353535 0.369344 0.505051 0.494949 0.505051 0.494949
0.0442923 0.01397 0.929293 0.931541 0.363636 0.369344 0.494949 0.505051 0.494949 0.505051
0.045535 0.0134828 0.353535 0.39381 0.919192 0.935421 0.525253 0.474747 0.535354 0.464646
0.0464321 0.012923 0.919192 0.931541 0.363636 0.39381 0.505051 0.494949 0.505051 0.494949
0.0472921 0.0124984 0.919192 0.927535 0.373737 0.39381 0.505051 0.494949 0.505051 0.494949
0.0484353 0.0120001 0.909091 0.931541 0.363636 0.416598 0.494949 0.505051 0.494949 0.505051
0.0494912 0.0115801 0.89899 0.935421 0.353535 0.437969 0.494949 0.505051 0.494949 0.505051
0.050467 0.0110879 0.434343 0.369344 0.929293 0.900747 0.505051 0.494949 0.505051 0.494949
0.0513517 0.0107122 0.929293 0.895806 0.444444 0.369344 0.505051 0.494949 0.505051 0.494949
0.0524834 0.0101622 0.434343 0.39381 0.919192 0.900747 0.505051 0.494949 0.505051 0.494949
0.0535165 0.00970234 0.909091 0.905549 0.424242 0.416598 0.505051 0.494949 0.505051 0.494949
0.054465 0.00931245 0.89899 0.910213 0.414141 0.437969 0.494949 0.505051 0.494949 0.505051
0.055294 0.00896829 0.424242 0.437969 0.89899 0.905549 0.505051 0.494949 0.505051 0.494949
0.0561215 0.00863262 0.89899 0.900747 0.434343 0.437969 0.505051 0.494949 0.505051 0.494949
0.0574924 0.00828312 0.515152 0.369344 0.929293 0.857099 0.505051 0.494949 0.505051 0.494949
0.0585325 0.00771178 0.878788 0.905549 0.424242 0.477213 0.505051 0.494949 0.505051 0.494949
0.0593793 0.00736789 0.888889 0.890724 0.454545 0.458123 0.505051 0.494949 0.505051 0.494949
0.0601783 0.00706943 0.888889 0.885496 0.464646 0.458123 0.505051 0.494949 0.505051 0.494949
0.0615494 0.00658263 0.444444 0.495362 0.868687 0.895806 0.494949 0.505051 0.494949 0.505051
0.062549 0.00621581 0.888889 0.868922 0.494949 0.458123 0.505051 0.494949 0.505051 0.494949
0.0634647 0.00593152 0.434343 0.52922 0.848485 0.900747 0.494949 0.505051 0.494949 0.505051
0.0645606 0.00552961 0.484848 0.495362 0.868687 0.874598 0.484848 0.515152 0.484848 0.515152
0.0654822 0.00519854 0.515152 0.477213 0.878788 0.857099 0.505051 0.494949 0.505051 0.494949
0.0665656 0.00483184 0.858586 0.868922 0.494949 0.51267 0.505051 0.494949 0.505051 0.494949
0.067493 0.00452911 0.868687 0.850946 0.525253 0.495362 0.505051 0.494949 0.505051 0.494949
0.0684353 0.00422357 0.848485 0.86309 0.505051 0.52922 0.505051 0.494949 0.505051 0.494949
0.0695236 0.00388039 0.505051 0.54508 0.838384 0.86309 0.494949 0.505051 0.494949 0.505051
0.0705477 0.00356369 0.505051 0.56031 0.828283 0.86309 0.494949 0.505051 0.494949 0.505051
0.0715119 0.00327061 0.818182 0.86309 0.505051 0.57496 0.494949 0.505051 0.494949 0.505051
0.0725362 0.00298261 0.616162 0.477213 0.878788 0.78762 0.505051 0.494949 0.505051 0.494949
0.0735655 0.00266655 0.868687 0.78762 0.616162 0.495362 0.505051 0.494949 0.505051 0.494949
0.0745218 0.00237155 0.838384 0.810413 0.585859 0.54508 0.505051 0.494949 0.505051 0.494949
0.0755558 0.00208845 0.505051 0.640837 0.767677 0.86309 0.494949 0.505051 0.494949 0.505051
0.0765556 0.00180022 0.525253 0.640837 0.767677 0.850946 0.494949 0.505051 0.494949 0.505051
0.0775623 0.00152044 0.848485 0.754269 0.656566 0.52922 0.505051 0.494949 0.505051 0.494949
0.0785764 0.00124303 0.787879 0.803014 0.59596 0.61583 0.484848 0.515152 0.484848 0.515152
0.0795346 0.000980127 0.606061 0.628539 0.777778 0.795418 0.494949 0.505051 0.494949 0.505051
0.0805697 0.000707077 0.646465 0.61583 0.787879 0.762944 0.505051 0.494949 0.505051 0.494949
0.0815659 0.000448765 0.606061 0.686349 0.727273 0.795418 0.494949 0.505051 0.494949 0.505051
0.082579 0.000191073 0.474747 0.824641 0.565657 0.880122 0.494949 0.505051 0.494949 0.505051
0.0832689 -5.59042e-05 0.010101 1 0 0.999949 0.494949 0.505051 0.494949 0.505051

Table 4.1: Approximation of optimal parameters for an SMP2 procedure according to lemma 4.1.3.
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An interesting set of measurement operators are those that account
for disturbance 0 and deviation 1/18. Their approximate parameters
are listed in the first line of table 4.1. By using the approximations
0.333333 ≈ 1

3 , 0.666667 ≈ 2
3 and the above lemmas it follows that

Mm = UmDmVm (m ∈ {0, 1}) can be composed of

V0 = − |0〉 〈0| − i |1〉 〈1| , V1 = |0〉 〈0| + i |1〉 〈1| ,
U0 = −

√
2/3 |0〉 〈0| + i

√
1/3 |0〉 〈1| +

√
1/3 |1〉 〈0| + i

√
2/3 |1〉 〈1| ,

U1 =
√

1/3 |0〉 〈0| + i
√

2/3 |0〉 〈1| +
√

2/3 |1〉 〈0| − i
√

1/3 |1〉 〈1| ,
D0 = |1〉 〈1| , D1 = |1〉 〈1| .

The corresponding guesses are g′0 = 2/3, g′1 = 1/3. Another inter-
esting set of operators are those that account for deviation 0 and
disturbance 1/12. By inference from the values of the last line of ta-
ble 4.1 if follows with the above two lemmas that they can be chosen
to be

M0 = 0, M1 =
√

1/2
(
(1+i)

(
|0〉 〈0|−|0〉 〈1|

)
+(1−i)

(
|1〉 〈0|+|1〉 〈1|

))
.

The guess corresponding to M1 is g′1(1) = 1/2 (specifying a guess
for M0 is pointless since the measurement outcome 0 is unobtainable
if M0 = 0). Why this rather peculiar set of operators accounts for
disturbance 0 needs further investigation. From the discussion of
the SMMP2 procedure we recall that another, less peculiar, set of
operators with disturbance 0 and deviation 1/12 is {Mm = 1

2

�
: m ∈

{0, 1}}. This set, of course, could also be used together with the
SMP2 procedure.

4.1.3 Postestimation with Three or More Outcomes

We see that the SMP2 procedure is much better than the SMP1
procedure (this is to be expected since the SMP1 procedure does not
rely on measurement results). This brings up an interesting question:
Is a procedure with many outcomes always better than one with less
outcomes? A first step towards the answer to that question could
involve the observation of a procedure with three outcomes. However,
if such a procedure is, given optimal parameters, not better than
one with two outcomes, one has to be careful not to draw a wrong
conclusion. For example, there could be some a that procedures with
an odd number of outcomes are at a disadvantage when compared to
procedures with an even number of outcomes.

4.2 Uniform Sequential Postestimation

In this section we treat postestimation procedures that comprise a
series of measurements, mostly as a preparation for tracking. Let us
define a general such procedure:
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USP Procedure.

Full name: Uniform Sequential Postestimation Procedure.
Parameters:

• A set of measurement operators, {M0,M1, . . . ,MZ−1}, Z ≥ 1.
• The number of measurements, N .
• The distance in time between measurements, τ .
• A guess function, g′1.

Steps:
1. A sequence of N measurements, separated in time by τ , is ap-

plied to the state ψ of the qubit under observation. The readout
of the measurements is stored in the vector ~m. The state of ψ
after the measurements is denoted by ψ′.

2. Using the readout ~m, the state of |c′1|2 is estimated with the
guess g′1(~m).

Under certain side conditions, it is possible to specify the best
guess in a closed form:

Lemma 4.2.1. The optimal guess for the USP procedure under the
side condition that
• the initial state vector, |ψ0〉, of the qubit under observation is com-

pletely unknown,
• the knowledge about the operator U that mediates the time evolution

between two consecutive measurements is given by the probability
density %(U),

is

g′1,~m =

∫
dU %(U) 〈1| Ẽ~m(U) |1〉∫

dU %(U) 〈0|E~m(U) |0〉 +
∫
dU %(U) 〈1|E~m(U) |1〉 ,

where ~m is the vector containing the measurement results (the mea-
surement operators are denoted by M0,M1, . . . ,MZ−1,Z ≥ 1) and

M~m(U) = MmZ−1
UMmZ−2

U · · ·UMm0
, (4.2.1)

E~m(U) = M †
~m(U)M~m(U), (4.2.2)

Ẽ~m(U) = M~m(U)M †
~m(U). (4.2.3)

Proof. The first step is the calculation of the postestimation deviation
of the tracking procedure. It turns out to be

v′ =
∫
dψ0%(ψ0)

∫
dU%(U)

∑
~m′ p(~m′|ψ0, U)

(
g′1,~m′ − |c1(~m′, ψ0, U)|2

)2
.

Because the disturbance doesn’t depend on the guess, all that is left
to do is to find the set of guesses that minimizes the postestimation
deviation. Since v′ has only one extremum, which is a minimum,
it suffices to take the derivative of v′, set it to zero, and solve the
resulting equation for g′1,~m. The result is the expression found in the
conjecture.
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In may be interesting to also find the best set of measurement
operators under the side conditions mentioned in the above lemma.
This, however, is probably a non trivial task.

4.3 Uniform Tracking

We will now take the USP procedure, build a corresponding tracking
procedure from it, and apply it to the task of tracking the system
that we have discussed in section 3.2.

UT Procedure.

Full name: Uniform Tracking Procedure.
Parameters:

• The set of measurement operators, {M0,M1, . . . ,MZ−1}, Z ≥ 1.
• The number of measurements, N .
• The distance in time between measurements, τ .
• A guess function, g1

Steps: The state ψ(t) of the qubit under observation is measured
at times t0, t0 + 1τ , t0 + 2τ , . . . , t0 + (N − 1)τ , where t0 is the
time when tracking starts. In parallel, the evolution of the param-
eter |c1(t)|2 = |〈1|ψ(t)〉|2 is continuously estimated using the guess
g1(~mN ′), where ~mN ′ is the vector containing the readout of the
first N ′ measurements.

Due to the similarities between both procedures, the optimal guess
for the USP procedure is also the optimal guess for the UT procedure.
In order to simulate the UT procedure applied to a system with the
Hamiltonian from section 3.2, it would be nice if that guess could be
rewritten into a form that doesn’t contain any integrals (they would
take up far too much computation time). This can be done. But
before doing so, we must learn how to rewrite the time evolution
operator based on the Hamiltonian from section 3.2 into a certain
form:

Lemma 4.3.1. The time evolution operator eiHIτ/~ with HI = ~D(|1〉 〈0|+
|0〉 〈1|) is identical to

cos(ϕ)
�

+ i sin(ϕ)σx,

where σx is the x-Pauli operator [NC02] and θ = −Dτ .

Proof. The identity follows from the decomposition of the exponen-
tial function using Pauli operators as explained in the chapter about
linear algebra in the Nielsen Chuang [NC02].

What follows is the promised guess:

Theorem 4.3.1. The optimal guess for the UT procedure under the
side condition that
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Figure 4.3: Simulation of the USP procedure applied to a qubit with a Hamiltonian of the formHI = ~D(|1〉 〈0|+|0〉 〈1|), D >
0. The employed measurement operators are M0 =

√
p0 |0〉 〈0|+

√
p1 |p1〉 〈p1| and M1 =

√
1 − p0 |0〉 〈0|+

√
1 − p1 |p1〉 〈p1|

with p̄ = 1
2
(p0 + p1) = 1

2
and ∆p = p1 − p0 = 0 (top plot), ∆p = 1 (middle plot), ∆p = 0.32 (bottom plot). The

dotted curve corresponds to the undisturbed evolution (i.e. without measurements) of the parameter |c1|2 of the observed
qubit, the dashed curve corresponds to actual evolution of |c1|2, and the solid curve corresponds to the guess g1 which was
calculated according to theorem 4.3.1. Whole numbers on the horizontal axis denote the position of measurements.

• the initial state vector, |ψ0〉, of the qubit under observation is com-
pletely unknown,

• the unitary operator mediating the time evolution between mea-
surements is known to be U(ϕ) = cos(ϕ)

�
+ i sin(ϕ)σx but ϕ is

completely unknown (i.e. it’s probability distribution function is
%(ϕ) = 1/(2π),

is

g1(~mN ′) =
Ẽ(~mN ′)11

E(~mN ′)00 +E(~mN ′)11
,

where

E(~mN ′)jk =
1

2π

1∑

p=0

N ′
0∑

n=0

(a
(N ′)
pjn )∗

d(n+N ′
0−1)/2e∑

q=b(n+1)/2c

a
(N ′)
pk(2q−n)Isc2(q,N

′
0 − q),

Ẽ(~mN ′)jj =
1

2π

N ′
0∑

n=0

a
(N ′)
jj(2n)Isc2(n,N

′
0 − n)
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with N ′
0 = N ′ − 1 and

Isc2(n,m) =
2

(n+m)!
Γ(n+

1

2
)Γ(m+

1

2
),

a
(N)
jkn =





〈j|Mm0
|k〉 = 〈j|MmN′

0

|k〉 for N = 1,
∑1

p=0

(
MmN′

0

)
jp

(
a
(N ′−1)
pk(n−1)δ(n ≥ 1)+

ia
(N ′−1)
(1−p)knδ(n ≤ N ′

0 − 1)
)

for N ≥ 2.

Proof. The best guess for the USP procedure (see lemma 4.2.1) is,
due to the similarity of the procedures, also the best guess for the
UT procedure. Starting with it, the next step is to eliminate the
integrals over 〈1| Ẽ~mN′ |1〉, 〈0|E~mN′ |0〉, and 〈1|E~mN′ |1〉. This is done
by expressing the integrands as bivariate polynomials in sin(ϕ) and

cos(ϕ), whose coefficients are given by the recursive relation a
(N)
jkn .

These polynomials can then be integrated and the results are the

above expressions for E(~mN ′)jk and Ẽ(~mN ′)jj . Thus, the conjecture
is true.

Figure 4.3 shows the results of simulations of the UT procedure us-
ing minimal measurements with the following measurement operators
(the parameterization is the same as that used in chapter 3)

M0 =
√
p0 |0〉 〈0| +

√
p1 |1〉 〈1| ,

M1 =
√

1 − p0 |0〉 〈0| +
√

1 − p1 |1〉 〈1|

For the top plot of figure 4.3, the parameters p0 and p1 where
chosen so that M0 and M1 are proportional to the unit operator.
Therefore, the observed qubit is not disturbed at all. On the other
hand, no information about the evolution of |c1|2 is gained and, thus,
the guess stays at 1/2 throughout.

In the middle plot of figure 4.3, the measurement operators are
projective. Consequently, the evolution of the qubit is heavily dis-
turbed and, because the information gain is high, the guess g1(t) can

be very close to |c1|2 at all times. Note that it actually looks as if

g1(t) coincides with |c1(t)|2 at all times. This, however, is not the

case because |c1|2 evolves in between measurements (recall the dis-
cussion of the UPMT procedure in chapter 2). This evolution was
simply not recorded during the simulation.

For the bottom plot of figure 4.3, the parameters of the measure-
ment operators where chosen so that the disturbance and deviation
nate kept in balance. What we see is interesting. In the beginning,
the guess g1(t) is not very good. Then, later, it slowly approaches

|c1|2. It looks as if the guess is learning. Of course, since it knows the
form of the Hamiltonian and since it takes into account all previous
measurement results, it is not surprising that the optimal guess is as
good as shown.
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Figure 4.4: Evolution of a qubit under the influence of the UT procedure using measurement operators M0 =
√
p0 |0〉 〈0|+√

p1 |p1〉 〈p1| and M1 =
√

1 − p0 |0〉 〈0| +
√

1 − p1 |p1〉 〈p1| with ∆p = p1 − p0 = 0 and p̄ = 1
2
(p0 + p1) = 1

2
(simulated with

Trasim). The dotted curve corresponds to the undisturbed evolution (i.e. without measurements) of the parameter |c1|2 of
the observed qubit, the dashed curve corresponds to actual evolution of |c1|2, and the solid curve corresponds to the guess
g1 which was calculated according to theorem 4.3.1. Each line corresponds to 200 measurements.
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The high quality of the guess gives the above UT procedure a large
advantage over other procedures: It is possible to observe the evo-
lution of |c1|2 while only mildly disturbing the system by individual
measurements. A plot that nicely illustrates this feature is displayed
in figure 4.4. It must, however, be pointed out that, although in-
dividual measurements cause little disturbance, the sum of all these
measurements causes considerable disturbance. It is to be assumed
that the offset α, the phase ϕ, and the amplitude β of the original
time evolution (i.e. before tracking starts)

|c1(t)|2 = α+ β cos(ϕ+ ωt)

become eventually almost completely “destroyed”.
We conclude this section with some remarks on optimal measure-

ment operators. The above choice ofMm =
√
αm0 |0〉 〈0|+

√
αm1 |1〉 〈1|

(α0
j = pj , α

1
j = 1 − pj), possibly, is not as good as it seems on first

sight. When gauging the quality in terms of disturbance and devia-
tion, the following operators may be an equal, if not better, alterna-
tive:

Mm =
√
αm0 |q0〉 〈q0| +

√
αm1 |q1〉 〈q1| ,

where |q0〉 and |q1〉 are the eigenstates of the Hamiltonian of the sys-

tem. They would cause |c1(t)|2 to “dive” variably quick towards a
stationary value. Consequently, a guess a with a stationary value is
sufficient to achieve a very low deviation. The disturbance is probably
in a similar range as when using the original measurement operators
(recall that, as explained above, these operators eventually cause a
considerable phase shift). The disadvantage of these alternative pa-
rameters is obvious: The dynamics of the system is suppressed.

The choice of optimal parameters deserves further investigation.
Especially interesting is the case where no a priory information about
the Hamiltonian of the observed qubit is available. For example in
the case that not even the minimum expectable frequency is known,
it may be necessary to make the temporal distance between measure-
ments an adaptive quantity. Solutions may be found in the theory of
discrete Fourier transformations.



5 Conclusion and Outlook

Let us reflect on some of the postestimation and tracking procedures
that we have discussed in this thesis. The basic procedures discussed
in the beginning of chapter 2 (namely the SPMP procedure and the
UPMT procedure) look quite primitive when compared to the proce-
dures that we discussed later. Anyone having experience with projec-
tive measurements would not have expected anything else. They were
presented mainly for completeness and to introduce general princi-
ples. What turned out to be interesting, though, were the frequency
determination and tracking procedures presented at the end of that
chapter. As mentioned there, it might be fruitful to solve the prob-
lem of finding the frequency determination procedure with the quick-
est convergence. A related problem, whose solution probably has a
wider application, is to find the quickest procedure for determining
the entire Hamiltonian of a system. One could try to use general mea-
surements for the solution of this problem, although, at first sight, it
looks as if projective measurements are just the right tool.

In chapter 2, several procedures employing minimal measurements
were discussed. We learned that the optimal parameters for the
SMMP procedure are somewhat disappointing since the correspond-
ing guess is always 1/2. The N-series tracking procedure did not get
much discussion. Other tracking procedures, most notably the UT
procedure that we discussed in chapter 3, seem to be much more pow-
erful because they take into account all previous measurement results
instead of just those from the last N-series and, therefore, make the
use of awkward filters unnecessary.

In the first part of chapter 4, we saw that postestimation with
minimal measurements is, fortunately, not “as far as it gets”: The
optimal parameters of the SMP2 procedure account for a guess that
is not just 1/2. It may be interesting to find out what are the best
parameters for the case of the USP procedure which is based on
sequential general measurements. This would likely also lead to the
best parameters for the UT procedure. Further, one could, instead of
using discrete measurements, use so called continuous measurements,
for the purpose of tracking. This approach has been discussed by
Audretsch et. al. [AKM01]. An open question seems to be, what are
the best parameters in terms of disturbance and deviation for this
kind of procedure?

It should be noted that, although used throughout this thesis, dis-
turbance and deviation may not always be the best choice of mea-
sures when gauging the quality of estimation and tracking procedures.
What measures are a good choice depends on the features of the ob-
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served qubit that are desired to be seen (for example, for the FD
procedure, where only the oscillation frequency is of interest, the
concept of disturbance and deviation is of not much use). The ap-
proach of finding the optimal estimation and tracking procedures by
minimizing the disturbance and deviation can, of course, be extended
to other quality criteria as well. Such criteria might for example be
the fidelity, a measure for the overlap of two state vectors. In fact
these criteria have been used to gauge the quality of procedures for
estimating the entire state vector of a qubit by a single measurement
[Ban01] [ADK03]. It may be promising to use them for finding a good
procedure for tracking the entire state vector of a qubit by sequential
measurements.

Another research proposal is the extension of tracking and esti-
mation to multi qubit systems. This, however, is a, conceptually,
nontrivial task since it is hard to visualize the state of these systems.
To avoid that problem, one could only concentrate on features of
multi qubit systems that can for example be represented as points
in a two dimensional plane. Maybe this could even lead to some in-
teresting applications which currently seem to be missing from the
theory of tracking |c1|2.



Tools for Computation in Qubit State

Space

Lemma .0.2. If %(ψ) is a uniform probability density of qubit states
and f is an integrable function on qubit state space, then

∫
dψ %(ψ)f(|ψ〉) =

1

4π

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ f
(
cos

ϑ

2
|0〉 + eiϕ sin

ϑ

2
|1〉
)
.

Proof. According to its definition in chapter 1, %(ψ) is homogeneously
distributed over the surface of the Bloch sphere (i.e. it is everywhere
the same on the Bloch sphere). Therefore, the integral of f over all
states, weighted with %(ψ), is proportional to an integral of f over
the surface of the Bloch sphere:

∫
dψ%(ψ) f(|ψ〉) =

C
∫ π
0 dϑ sinϑ

∫ 2π

0 dϕ %(ϑ, ϕ)f
(
cos ϑ2 |0〉 + eiϕ sin ϑ

2 |1〉
)
, (.0.1)

where the factor C is defined by the normalization of %(ψ):

∫
dψ %(ψ) = 1

(.0.1)⇔ C
∫ π
0 dϑ sinϑ

∫ 2π

0 dϕ = 1 ⇔ C = 1
4π .

Lemma .0.3. If %(ψ) is a uniform probability density of qubit states,
if |χ〉 is a qubit state, and if f : [0, 1] → � is a function that is
integrable on [0, 1], then

∫
dψ %(ψ)f(|〈χ|ψ〉|2) =

∫ 1

0

dα f(α).

Proof. By imagining the Bloch sphere, it is easily seen that, because
%(ψ) is uniform, the value of

∫
dψ %(ψ)f(|〈χ|ψ〉|2) must be indepen-

dent of the direction of |χ〉. Therefore, we can substitute |χ〉 by |1〉:
∫
dψ %(ψ)f(|〈χ|ψ〉|2) =

∫
dψ %(ψ)f(|〈1|ψ〉|2).

According to lemma .0.2 the right side of this expression is equal to

1
4π

∫ π
0 dϑ sinϑ

∫ 2π

0 dϕ f(sin2 ϑ
2 ),

which, by standard rules of integration, together with the substitution

α ≡ sin2(ϑ/2) evaluates to
∫ 1

0
dα f(α).
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Trasim

Trasim is a computer program that was used for the creation of many
graphs in this thesis (see chapter on how to obtain it). Its name is a
concatenation of the first three letters of each of the words tracking
and simulation. With this knowledge it’s easy to guess that Trasim’s
purpose is the simulation of tracking procedures, though, during the
creation of this thesis, Trasim has also been (ab)used to simulate just
sequences of measurements (in this case the “guess-output” explained
below has been ignored). Many details of the program are explained
in the documentation that is included in the Trasim software package
(the file README in the main directory of the package is a good
starting point). Let us therefore look just at its most important
features:

Input: Input to Trasim is encoded in an input file that the user of
the program specifies as a command line parameter. It is primarily
comprised of

• the names of the output files,
• the Hamiltonian H of the simulated system,
• the initial state |ψinit〉 of the system,
• the tracking procedure to be simulated (e.g. frequency track-

ing) and its parameters (e.g. the temporal distance between
measurements),

• the type of guess to be used,
• the measurement operators to be used,
• the duration of the tracking procedure.

Output: Trasim’s output consists of two files. One contains miscel-
laneous data, like for example the time that the simulation took
on the computer. The other file contains data describing the sim-
ulated temporal evolution of the system and the guess.

Main steps: How and when the program reads and writes input
and output data shall not interest us for this short overview. Let
us instead have a look at the most important steps during the
simulation of a tracking procedure. After the system’s state vector
|ψ〉 is initialized with |ψinit〉, the following steps are repeated for
the duration of the tracking procedure:

1. A measurement of |ψ〉 is simulated. It’s outcome is determined
with the help of a pseudo random number generator and |ψ〉 is
transformed into the corresponding post measurement state.

2. The guess for |c1|2 = |〈1|ψ〉|2 is calculated. It depends on the
outcomes of the preceding measurement or measurements.
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3. The time evolution of the system’s state vector |ψ〉 is simulated
by sequential application of operators eiHτi/~, where the τi sum
up to the temporal distance between the last and the next mea-
surement. This sequential application is useful when the user
wants to get a picture of the time evolution of |c1|2 in between
measurements.
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